
Advanced	 x86:	
BIOS	 and	 System	 Management	 Mode	 Internals	

SPI	 Flash	 Protec/on	 Mechanisms	

Xeno	 Kovah	 &&	 Corey	 Kallenberg	
LegbaCore,	 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	 condiEon:	 You	 must	 indicate	 that	 derivaEve	 work	
"Is	 derived	 from	 John	 BuBerworth	 &	 Xeno	 Kovah’s	 ’Advanced	 Intel	 x86:	 BIOS	 and	 SMM’	 class	 posted	 at	 hBp://opensecuritytraining.info/IntroBIOS.html”	

How	 to	 stop	 someone	 from	 wriEng	 to	
your	 BIOS	

•  AKA	 “How	 to	 stop	 an	 aBacker	 from	 wriEng	 to	
your	 BIOS”	
– AKA	 “What	 the	 BIOS	 vendors	 are	 typically	
configuring	 wrong	 when	 they’re	 supposed	 to	 be	
stopping	 aBackers	 from	 wriEng	 to	 your	 BIOS”	

3	

•  With no Flash Descriptor present, the only mechanisms
to lock the flash are:
–  BIOS Range Write Protection
–  Global Flash Write Protection

•  The reference to FWH Sector Protection yields no results
in any datasheets. I am assuming it is related to the R/W
control shown in the sample FWH register map at the
beginning of the BIOS Flash section

Flash Protection

4	

•  Covering this first because I believe it to be your first line
of defense to protect your BIOS flash from writes

•  Applies to the entire flash chip (Global Flash Protection)
•  Provides SMM the ability to determine whether or not a

request to unlock the BIOS flash for writing will be
permitted

•  This protection is provided by the chipset (not on the
flash itself)

Flash Protection Mechanism #1

5	

•  On MCH/ICH
systems, bits 7:5 of
the BIOS_CNTL are
reserved

•  On this system
BIOS_CNTL is
located in the LPC
device (D31:F0, offset
DCh)

•  These protections
would also apply to
the Firmware Hub
(FWH) if the BIOS
were located there.

Global BIOS Write Protection

6	

ICH/PCH Chipset
SMM-derived Write Protection:

•  BIOS_CNTL.BIOSWE (bit 0) enables write access to the
flash chip
–  Always R/W

•  BIOS_CNTL.BLE (bit 1) provides an opportunity for the
OEM to implement an SMI to protect the BIOSWE bit

7	

How	 you	 should	 think	 of	 BLE	

CPU	

ICH	 or	 PCH	

RAM	

Flash	 Chip	
SPI	

SMRAM	
(SMI	 Handler)	

I	 sort	 of	 provide	 BIOS	
access	 control!	

I	 help!	

How it works

BIOS_CNTL.BIOSWE	 =	 1	 BIOS_CNTL	
BLE	 =	 1	

BIOSWE	 =	 0	

Privileged	
ApplicaEon	

•  Privileged app wants to write to the SPI flash, sets
BIOS_CNTL.BIOSWE to 1
–  The only reason privileges are needed is to execute the in/out

instructions

SMM	

9	

How it works

BIOS_CNTL	
BLE	 =	 1	

BIOSWE	 =	 1	

SMM	

SMI	

•  The BIOS_CNTL register has the BIOS Lock (BLE) enabled
•  Asserting BIOSWE while BLE is set generates an SMI#

–  SMI# is initiated by the Chipset (ICH)
•  The processor transitions to System Management Mode

Privileged	
ApplicaEon	

10	

How it works

BIOS_CNTL	
BLE	 =	 1	

BIOSWE	 =	 1	

SMM	

No	 no	 no,	
this	 will	

never	 do…	

•  A routine in the SMI handler explicitly checks to see if
BIOS_CNTL.BIOSWE is set

Privileged	
ApplicaEon	

11	

How it works

BIOS_CNTL	
BLE	 =	 1	

BIOSWE	 =	 0	

SMM	

Much	 beBer	

•  The SMI handler flips this bit back to 0, disabling writes
to the serial flash
–  Since updates should be applied only by SMRAM, SMRAM

knows that unless it flipped this bit, this bit shouldn’t be flipped.

Privileged	
ApplicaEon	

12	

Heh	 heh	 heh	

SMM	

How it works

BIOS_CNTL	
BLE	 =	 1	

BIOSWE	 =	 0	

Aw	

•  From the app’s perspective, it appears the BIOSWE bit was
never even asserted.

•  Of course this only works if:
–  BLE is asserted/enabled
–  There is a SMI handler explicitly checking/resetting the BIOSWE bit
–  SMIs cannot be somehow suppressed (you already saw 1 way)

Privileged	
ApplicaEon	

13	

•  Look at the BIOS_CNTL
register in the LPC
device

•  BIOS Lock Enable (BLE)
bit 1 is not asserted

•  This means any
application privileged
enough to either map the
PCI Express
configuration space or
perform port I/O can
assert BIOSWE to
enable writes to the
BIOS flash

vulnBIOS example: BIOS_CNTL Testing

14	

•  You don’t have to do this,
but note that it is
possible to set BIOS
Lock Enable to 1 and not
have an SMI handler
routine running that
checks and de-asserts
BIOS Write Enable bit 0

•  We've seen this on
multiple systems; where
BLE was set, but
asserting BIOSWE to 1
was not reset to 0

•  This is why bit 0 must be
tested in order to really
test write-protection

vulnBIOS example: BIOS_CNTL Testing

15	

•  Now we’re going to
setup BIOS_CNTL so
that it protects the flash

•  This will only work on
these lab machines with
this modified BIOS

•  I inserted a custom SMI
handler that resets the
BIOSWE bit to 0 if it is
asserted

•  We’re going to enable
this by writing the word
0xb105 to port 0xB2

•  You should now see the
BLE bit asserted in
BIOS_CNTL (0x0A)

vulnBIOS example:
BIOS_CNTL Testing: Set BLE

16	

•  Now try to enable writes
to the BIOS by asserting
BIOSWE bit 0
–  Set BIOS_CNTL to 0x0B

•  You will notice that it
resets to 0x0A

•  This is the SMI handler
working as it should

•  Note the reset of BIOSWE
to 0 occurs during SMM

•  Any tangible delay you
see in resetting this value
is due to the
(configurable) “Refresh”
button in RW-E

vulnBIOS example:
BIOS_CNTL Testing

Bit	 0	 is	 de-‐asserted	

17	

BIOSWE/BLE	 should	 be	 considered	
deprecated!	

•  We	 can	 defeat	 it	 on	 systems	 that	 are	 not	 using	 SMRRs	
–  "The	 Sicilian"	 –	 "DefeaEng	 Signed	 BIOS	 enforcement",	 	 Kallenberg	 et	

al.,	 EkoParty	 2013	
•  We	 can	 defeat	 it	 on	 systems	 that	 don't	 set	 SMI_LOCK	

–  "Charizard"	 –	 "Setup	 for	 Failure:	 DefeaEng	 UEFI	 Secure	 Boot",	
Kallenberg	 et	 al.,	 Syscan	 2014	

–  But	 Charizard	 actually	 found	 by	 Sam	 Cornwell,	 it	 just	 got	 merged	 into	
Corey's	 talk	 in	 its	 first	 appearance.	 Will	 be	 spun	 off	 later.	

•  We	 can	 defeat	 it	 on	 systems	 TXT-‐enabled	 that	 suppress	 SMIs	
–  "Sandman"	 –	 "SENTER	 Sandman:	 Using	 Intel	 TXT	 to	 aBack	 BIOSes",	

Kovah	 et	 al.,	 Summercon	 2014	
•  We	 have	 a	 new	 fundamental	 aBack	 against	 it	 that	 will	 bypass	 BLE	

on	 all	 systems,	 once	 and	 for	 all.	 “Speed	 Racer”	 We’ll	 talk	 about	
these	 at	 the	 end,	 depending	 on	 Eme.	

18	

•  In PCH chipsets, bit 5 of
BIOS_CNTL has been
defined:

•  Provides the vendor the ability
to ensure that BIOS region
may ONLY be written to when
all processors are in SMM and
BIOSWE is enabled

•  Our lab system does not
implement this bit because it
is an MCH/ICH system, but
check it out on your own

•  As we’ve seen, this register is
important to lock down the
BIOS to mitigate SMI
suppression

•  Same here
•  Only 6 out of ~10k systems

we’ve measured to date use
it!!! L
–  As of 3/31/2014

BIOS_CNTL: SMM_BWP

19	

•  BIOS Range Write-Protection is the second major line of
defense

•  There are 5 Protected Range registers (0-4) with
independent R/W permissions

•  Setting these will prevent reads and/or writes until the
system is reset.

Another Protection Mechanism

*	 InformaEon	 on	 FWH	 Sector	 ProtecEon	 is	 hard	 to	 come	 by.	 It	 appears	 to	 be	 a	 security	 mechanic	 on	 the	 chip	 itself,	 since	
chips	 can	 be	 described	 as	 being	 divided	 into	 sectors.	 20	

Example	 of	 a	 Protect	 Range	 Register	

So	 who	 protects	 	
the	 protector?	
This	 guy	 that’s	 who!	
We’ll	 get	 to	 that	 later	

21	

Protected Range (PR) Registers
•  The protections prescribed herein are enforced even

upon the SMI handler
•  Enforced on register access, not direct access, however
•  Protected ranges are available to a SPI flash operating

in either Non-Descriptor mode or Descriptor mode
–  The ranges don’t have to mirror descriptor mode regions

•  Base addresses must be page-aligned
–  Lower 12 bits are 000h

•  Limit addresses end at one under a page aligned
boundary
–  Lower 12 bits are FFFh

•  Addresses are Flash Linear Addresses (FLAs)
–  Basically an offset from the base of the flash
–  So “offset” 0x260000 on the flash is Flash Linear Address 0x260000

22	

PR Sample: 03FF02A2h
Base 2A2000h

•  To set a PR from a Flash Linear Address Limit:
•  PRbase = ((page-aligned FLAbase) & FFF000) >> 12
•  PRbase |= 2A2 = 0000002A2h
•  To write-protect this range: PR0 | = 80000000h
•  To read-protect this range: PR0 |= 00008000h

*We’re	 picking	 a	 funny	 base	 because	 the	 offset	 at	 the	 real	 BIOS	 base	 is	 normally	 all	 0xFF’s	 so	 it’s	 harder	 to	 illustrate	 the	 point.	 	
This	 example	 will	 show	 us	 a	 visible	 boundary	 whereas	 the	 real	 BIOS	 base	 address	 would	 not.	

24	 23	 22	 21	 20	 19	 18	 17	 16	 15	 14	 13	 12	 11	 10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

0	 0	 0	 1	 0	 1	 0	 1	 0	 0	 0	 1	 0	 	 0	 0	 	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

FLAbase	 =	 2A2000h	 	 	

23	

31	 30	 29	 28	 27	 26	 25	 24	 23	 22	 21	 20	 19	 18	 17	 16	 15	 14	 13	 12	 11	 10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

W
P	 	 	 	 0	 0	 0	 1	 1	 1	 1	 1	 1	 1	 1	 	 1	 	 1	 R	

P	 	 	 	 0	 0	 0	 1	 0	 1	 0	 1	 0	 0	 0	 1	 0	

Protected	 Range	 Base	

PR Example: 03FF02A2h
Limit 3FFFFFh

•  To set a PR from a Flash Linear Address Limit:
•  PRlimit = (page-aligned FLAlimit) << 16
•  PRlimit = 3FF000 << 4 = 03FF02A2h
•  To write-protect this: PR | = 80000000h
•  To read-protect this: PR |= 00008000h

24	 23	 22	 21	 20	 19	 18	 17	 16	 15	 14	 13	 12	 11	 10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

0	 0	 0	 	 1	 1	 	 	 1	 	 1	 	 1	 1	 	 	 1	 	 1	 	 1	 	 1	 	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	

FLAlimit	 =	 3FFFFFh	

24	

31	 30	 29	 28	 27	 26	 25	 24	 23	 22	 21	 20	 19	 18	 17	 16	 15	 14	 13	 12	 11	 10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

W
P	 	 	 	 0	 0	 0	 1	 1	 1	 1	 1	 1	 1	 1	 	 1	 	 1	 R	

P	 	 	 	 0	 0	 0	 1	 0	 1	 0	 1	 0	 0	 0	 1	 0	

Protected	 Range	 Limit	

vulnBIOS Example: Protected Range Registers

•  On our lab E6400, the BIOS region occupies the range
260000 – 3FFFFFh on the physical chip

–  260000h and 3FFFFFh are Flash Linear Addresses (FLAs)
•  The CPU/BIOS (including us using RW-E) always has Read/

Write access the BIOS region on flash
–  Per the flash master permission settings

BIOS	 Region	

260000h	 (start	 of	 BIOS	 region)	

3FFFFFh	 (BIOS	 limit)	

25	

vulnBIOS Example: Protected Range Registers

•  The previous slides set up a protected range from 2A2000h to
3FFFFFh

•  PR = 03FF02A2h (has not yet been read/write protected)
•  On our lab machines, this covers a portion of our BIOS region

BIOS	 Region	
2A2000h	 (start	 of	 protected	 range)	

260000h	 (start	 of	 BIOS	 region)	

3FFFFFh	 (BIOS	 limit)	

26	

vulnBIOS Example: Protected Range Registers

•  Let’s first verify we can read this by viewing the BIOS dump
from Copernicus
•  PR = 03FF02A2h (has not yet been read/write protected)
•  On our lab machines, this covers a portion of our BIOS region

BIOS	 Region	
2A2000h	 (start	 of	 protected	 range)	

260000h	 (start	 of	 BIOS	 region)	

3FFFFFh	 (BIOS	 limit,	 end	 of	 protected	 range)	

27	

vulnBIOS example: Protected Range Registers

•  First let’s establish that we have permission to read the BIOS
region

•  Run Copernicus and open the .bin file with your favorite hex
editor (HxD is a good one for Windows)

•  Observe binary range 2A2000-3FFFFFh
•  Looks like BIOS to me!

2A2000h	 (PR	 Start)	

3FFFFFh	 (PR	 End	 (BIOS	 Limit))	

.	

.	

.	
.	
.	
.	

.	

.	

.	

28	

vulnBIOS example: Protected Range Registers

•  To Write-protect a
range:

•  PR | = 80000000h
•  To Read-protect a

range:
•  PR |= 00008000h

•  For this example let’s
disable reads to this
range:

•  Set PR0 (at SPIBAR +
74h) to 03FF82A2h

29	

vulnBIOS example: Protected Range Registers

•  Now re-run Copernicus and view the BIOS binary file in a hex
editor

•  As you can see the Protected Range registers override the
Flash Master permissions

•  This is the BIOS region to which the CPU/BIOS Master
otherwise “always” has permission to read and write

2A2000h	 (PR	 Start)	

3FFFFFh	 (PR	 End	 (BIOS	 Limit))	

.	

.	

.	
.	
.	
.	

.	

.	

.	

30	

PR Summary:
•  Implementing Protected Ranges is an important strategy for

locking down a system BIOS
•  Without PR’s, any bypass of SMM’s global write-protection

means an attacker is automatically able to modify the BIOS
•  Protected Range register enforcement:

–  Overrides the Flash Master permissions
–  Prevents Reads/Writes directly from the flash, even when

the processor is running in SMM
•  We did not demonstrate this, but it is true

•  Because of this, BIOS updates (or updates to protected
ranges) must be performed before the Protected Ranges are
configured by the BIOS

•  Only the vendor can reliably configure PR’s since new UEFI
BIOSes had a region of naturally changing content

31	

FLOCKDN Register

•  When we were been able to easily modify (and re-
modify) registers in the SPI configuration registers that
are designed to protect the system

•  For example, we can configure and modify the protected
range registers to suit the needs of a lab

•  But if we can change them, so can any other app
capable of mapping SPIBAR

•  Intel provides the FLOCKDN register to solve this
problem

32	

FLOCKDN

•  FLOCKDN, when asserted, prevents certain configuration
registers/bits in the SPI BAR from being changed

•  Once asserted, FLOCKDN cannot be reset to 0 until a reset
–  Or can it? :) Snorlax & Darth Venamis on Day 5!

•  Although hardware-sequencing is available only in descriptor
mode, the FLOCKDN bit still provides register lock-down
protection when the flash is operating in non-descriptor mode
–  Called SPI or Flash Configuration Lock-Down bit

33	

1.  Flash Regions Access Permissions Register (FRAP)
–  bits 31:24 (BMWAG) and bits 23:16 (BMRAG)

2.  Protected Range (PR) registers 0 to 4
–  entire register is locked

3.  Software Sequencing Flash Control Register (SSFC)
–  bits 18:16
–  Configure SPI Cycle Frequency (20 MHz, 33 MHz, or 50 MHz

[PCH only])
4.  Prefix Opcode Configuration Register (PREOP)

–  entire register is locked

5.  Opcode Type Configuration Registers (OPTYPE)
–  Entire register is locked

6.  Opcode Menu Configuration Register (OPMENU)
–  Entire register is locked

FLOCKDN Affected Registers
(see your manual, but at the time of original class generation…)

34	

SPI Lockdown Summary 1
•  Locking down the SPI Flash is a little more complicated than

locking down SMM
•  For the most part, only the vendor can do this, but you can

verify and try to implement some yourself

•  Verify that BIOS_CNTL.BLE is set
–  Oh wait…we’re going to talk about something in a sec that

completely bypasses BLE :)
–  If it’s not set, you can assert it yourself but that doesn’t mean there

is SMI handler code present that will de-assert bit 0
•  Verify that SMM is protecting the BIOS from writes by

asserting bit 0 and ensuring that it is reset
•  If supported, ensure that BIOS_CNTL.SMM_BWP is asserted

so that the BIOS can only be written to when the processor is
in SMM
–  You can set this yourself. The only drawback being that you may not

be able to update the BIOS, depending on how the vendor
implemented updates

35	

SPI Lockdown Summary 2

•  Verify that Protected Range registers are being used
–  You could also set these yourself but it will be a trial and error

exercise since you won’t know what parts of the BIOS flash will
be used to store variables (UEFI definitely and some Legacy)

•  Set FLOCKDN to ensure the above registers can’t be
changed

•  The above changes you could play with won’t
permanently hurt your system if they lock it up – they will
all reset back to their original values on startup

•  Verify that the Flash Master permissions are set and that
the Flash Descriptor region cannot itself be written to
–  You have no control over this unless it is writeable, in which case

the most you should do is make the FD un-writeable
–  Messing with this one could brick your system “permanently”

36	

SPI Summary
•  Locking down the SPI flash memory is the first line of

defense against an attacker
•  It is complicated and hard for vendors to get right
•  It gets a little more complex in UEFI where the SPI flash

is specifically used as a file system for storing system
variables
–  Can’t just set a single PR to write-protect the whole BIOS region

•  Remember:
•  The BIOS boots from the flash and is responsible for

configuring all of the settings we have been discussing
so far in the class

•  Letting an attacker modify the BIOS means game over
•  It’s not easy, but it’s not that hard either for an attacker to

modify your BIOS flash	

37	

SPI Summary
•  All the settings in this section apply to both x86 and x64

architecture
•  All the settings in this section apply to both legacy BIOS

and UEFI BIOS
•  All the settings in this section apply to systems running

legacy MCH/ICH chipsets and the new PCH chipsets
–  Except where otherwise noted (SMM_BWP)	

38	

