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How	  to	  stop	  someone	  from	  wriEng	  to	  
your	  BIOS	  

•  AKA	  “How	  to	  stop	  an	  aBacker	  from	  wriEng	  to	  
your	  BIOS”	  
– AKA	  “What	  the	  BIOS	  vendors	  are	  typically	  
configuring	  wrong	  when	  they’re	  supposed	  to	  be	  
stopping	  aBackers	  from	  wriEng	  to	  your	  BIOS”	  
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•  With no Flash Descriptor present, the only mechanisms 
to lock the flash are: 
–  BIOS Range Write Protection 
–  Global Flash Write Protection 

•  The reference to FWH Sector Protection yields no results 
in any datasheets. I am assuming it is related to the R/W 
control shown in the sample FWH register map at the 
beginning of the BIOS Flash section 

Flash Protection 
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•  Covering this first because I believe it to be your first line 
of defense to protect your BIOS flash from writes 

•  Applies to the entire flash chip (Global Flash Protection) 
•  Provides SMM the ability to determine whether or not a 

request to unlock the BIOS flash for writing will be 
permitted 

•  This protection is provided by the chipset (not on the 
flash itself) 

Flash Protection Mechanism #1 
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•  On MCH/ICH 
systems, bits 7:5 of 
the BIOS_CNTL are 
reserved 

•  On this system 
BIOS_CNTL is 
located in the LPC 
device (D31:F0, offset 
DCh) 

•  These protections 
would also apply to 
the Firmware Hub 
(FWH) if the BIOS 
were located there. 

Global BIOS Write Protection 
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ICH/PCH Chipset  
SMM-derived Write Protection: 

•  BIOS_CNTL.BIOSWE (bit 0) enables write access to the 
flash chip 
–  Always R/W 

•  BIOS_CNTL.BLE (bit 1) provides an opportunity for the 
OEM to implement an SMI to protect the BIOSWE bit 
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How	  you	  should	  think	  of	  BLE	  

CPU	  

ICH	  or	  PCH	  

RAM	  

Flash	  Chip	  
SPI	  

SMRAM	  
(SMI	  Handler)	  

I	  sort	  of	  provide	  BIOS	  
access	  control!	  

I	  help!	  



How it works 

BIOS_CNTL.BIOSWE	  =	  1	   BIOS_CNTL	  
BLE	  =	  1	  

BIOSWE	  =	  0	  

Privileged	  
ApplicaEon	  

•  Privileged app wants to write to the SPI flash, sets 
BIOS_CNTL.BIOSWE to 1 
–  The only reason privileges are needed is to execute the in/out 

instructions 

SMM	  
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How it works 

BIOS_CNTL	  
BLE	  =	  1	  

BIOSWE	  =	  1	  

SMM	  

SMI	  

•  The BIOS_CNTL register has the BIOS Lock (BLE) enabled 
•  Asserting BIOSWE while BLE is set generates an SMI# 

–  SMI# is initiated by the Chipset (ICH) 
•  The processor transitions to System Management Mode 

Privileged	  
ApplicaEon	  
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How it works 

BIOS_CNTL	  
BLE	  =	  1	  

BIOSWE	  =	  1	  

SMM	  

No	  no	  no,	  
this	  will	  

never	  do…	  

•  A routine in the SMI handler explicitly checks to see if 
BIOS_CNTL.BIOSWE is set 

Privileged	  
ApplicaEon	  
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How it works 

BIOS_CNTL	  
BLE	  =	  1	  

BIOSWE	  =	  0	  

SMM	  

Much	  beBer	  

•  The SMI handler flips this bit back to 0, disabling writes 
to the serial flash 
–  Since updates should be applied only by SMRAM, SMRAM 

knows that unless it flipped this bit, this bit shouldn’t be flipped. 

Privileged	  
ApplicaEon	  
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Heh	  heh	  heh	  

SMM	  

How it works 

BIOS_CNTL	  
BLE	  =	  1	  

BIOSWE	  =	  0	  

Aw	  

•  From the app’s perspective, it appears the BIOSWE bit was 
never even asserted. 

•  Of course this only works if: 
–  BLE is asserted/enabled 
–  There is a SMI handler explicitly checking/resetting the BIOSWE bit 
–  SMIs cannot be somehow suppressed (you already saw 1 way) 

Privileged	  
ApplicaEon	  
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•  Look at the BIOS_CNTL 
register in the LPC 
device 

•  BIOS Lock Enable (BLE) 
bit 1 is not asserted  

•  This means any 
application privileged 
enough to either map the 
PCI Express 
configuration space or 
perform port I/O can 
assert BIOSWE to 
enable writes to the 
BIOS flash 

vulnBIOS example: BIOS_CNTL Testing  
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•  You don’t have to do this, 
but note that it is 
possible to set BIOS 
Lock Enable to 1 and not 
have an SMI handler 
routine running that 
checks and de-asserts 
BIOS Write Enable bit 0 

•  We've seen this on 
multiple systems; where 
BLE was set, but 
asserting BIOSWE to 1 
was not reset to 0 

•  This is why bit 0 must be 
tested in order to really 
test write-protection 

vulnBIOS example: BIOS_CNTL Testing 
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•  Now we’re going to 
setup BIOS_CNTL so 
that it protects the flash 

•  This will only work on 
these lab machines with 
this modified BIOS 

•  I inserted a custom SMI 
handler that resets the 
BIOSWE bit to 0 if it is 
asserted 

•  We’re going to enable 
this by writing the word 
0xb105 to port 0xB2 

•  You should now see the 
BLE bit asserted in 
BIOS_CNTL (0x0A) 

vulnBIOS example:  
BIOS_CNTL Testing: Set BLE 
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•  Now try to enable writes 
to the BIOS by asserting 
BIOSWE bit 0 
–  Set BIOS_CNTL to 0x0B 

•  You will notice that it 
resets to 0x0A 

•  This is the SMI handler 
working as it should 

•  Note the reset of BIOSWE 
to 0 occurs during SMM 

•  Any tangible delay you 
see in resetting this value 
is due to the 
(configurable) “Refresh” 
button in RW-E 

vulnBIOS example:  
BIOS_CNTL Testing 

Bit	  0	  is	  de-‐asserted	  
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BIOSWE/BLE	  should	  be	  considered	  
deprecated!	  

•  We	  can	  defeat	  it	  on	  systems	  that	  are	  not	  using	  SMRRs	  
–  "The	  Sicilian"	  –	  "DefeaEng	  Signed	  BIOS	  enforcement",	  	  Kallenberg	  et	  

al.,	  EkoParty	  2013	  
•  We	  can	  defeat	  it	  on	  systems	  that	  don't	  set	  SMI_LOCK	  

–  "Charizard"	  –	  "Setup	  for	  Failure:	  DefeaEng	  UEFI	  Secure	  Boot",	  
Kallenberg	  et	  al.,	  Syscan	  2014	  

–  But	  Charizard	  actually	  found	  by	  Sam	  Cornwell,	  it	  just	  got	  merged	  into	  
Corey's	  talk	  in	  its	  first	  appearance.	  Will	  be	  spun	  off	  later.	  

•  We	  can	  defeat	  it	  on	  systems	  TXT-‐enabled	  that	  suppress	  SMIs	  
–  "Sandman"	  –	  "SENTER	  Sandman:	  Using	  Intel	  TXT	  to	  aBack	  BIOSes",	  

Kovah	  et	  al.,	  Summercon	  2014	  
•  We	  have	  a	  new	  fundamental	  aBack	  against	  it	  that	  will	  bypass	  BLE	  

on	  all	  systems,	  once	  and	  for	  all.	  “Speed	  Racer”	  We’ll	  talk	  about	  
these	  at	  the	  end,	  depending	  on	  Eme.	  
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•  In PCH chipsets, bit 5 of 
BIOS_CNTL has been 
defined: 

•  Provides the vendor the ability 
to ensure that BIOS region 
may ONLY be written to when 
all processors are in SMM and 
BIOSWE is enabled 

•  Our lab system does not 
implement this bit because it 
is an MCH/ICH system, but 
check it out on your own 

•  As we’ve seen, this register is 
important to lock down the 
BIOS to mitigate SMI 
suppression 

•  Same here 
•  Only 6 out of ~10k systems 

we’ve measured to date use 
it!!!  L 
–  As of 3/31/2014 

BIOS_CNTL: SMM_BWP 
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•  BIOS Range Write-Protection is the second major line of 
defense 

•  There are 5 Protected Range registers (0-4) with 
independent R/W permissions 

•  Setting these will prevent reads and/or writes until the 
system is reset. 

Another Protection Mechanism 

*	  InformaEon	  on	  FWH	  Sector	  ProtecEon	  is	  hard	  to	  come	  by.	  It	  appears	  to	  be	  a	  security	  mechanic	  on	  the	  chip	  itself,	  since	  
chips	  can	  be	  described	  as	  being	  divided	  into	  sectors.	   20	  



Example	  of	  a	  Protect	  Range	  Register	  

So	  who	  protects	  	  
the	  protector?	  
This	  guy	  that’s	  who!	  
We’ll	  get	  to	  that	  later	  
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Protected Range (PR) Registers 
•  The protections prescribed herein are enforced even 

upon the SMI handler 
•  Enforced on register access, not direct access, however 
•  Protected ranges are available to a SPI flash operating 

in either Non-Descriptor mode or Descriptor mode 
–  The ranges don’t have to mirror descriptor mode regions 

•  Base addresses must be page-aligned 
–  Lower 12 bits are 000h 

•  Limit addresses end at one under a page aligned 
boundary 
–  Lower 12 bits are FFFh 

•  Addresses are Flash Linear Addresses (FLAs)  
–  Basically an offset from the base of the flash 
–  So “offset” 0x260000 on the flash is Flash Linear Address 0x260000 
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PR Sample: 03FF02A2h 
Base 2A2000h 

•  To set a PR from a Flash Linear Address Limit: 
•  PRbase = ((page-aligned FLAbase) & FFF000) >> 12 
•  PRbase |= 2A2 = 0000002A2h 
•  To write-protect this range: PR0 | = 80000000h 
•  To read-protect this range: PR0 |= 00008000h 

*We’re	  picking	  a	  funny	  base	  because	  the	  offset	  at	  the	  real	  BIOS	  base	  is	  normally	  all	  0xFF’s	  so	  it’s	  harder	  to	  illustrate	  the	  point.	  	  
This	  example	  will	  show	  us	  a	  visible	  boundary	  whereas	  the	  real	  BIOS	  base	  address	  would	  not.	  

24	   23	   22	   21	   20	   19	   18	   17	   16	   15	   14	   13	   12	   11	   10	   9	   8	   7	   6	   5	   4	   3	   2	   1	   0	  

0	   0	   0	   1	   0	   1	   0	   1	   0	   0	   0	   1	   0	   	  0	   0	  	   0	   0	   0	   0	   0	   0	   0	   0	   0	   0	  

FLAbase	  =	  2A2000h	  	  	  

23	  

31	   30	   29	   28	   27	   26	   25	   24	   23	   22	   21	   20	   19	   18	   17	   16	   15	   14	   13	   12	   11	   10	   9	   8	   7	   6	   5	   4	   3	   2	   1	   0	  

W
P	   	  	   	  0	   0	   0	   1	   1	   1	   1	   1	   1	   1	   1	   	  1	   	  1	   R	  

P	   	  	   	  0	   0	   0	   1	   0	   1	   0	   1	   0	   0	   0	   1	   0	  

Protected	  Range	  Base	  



PR Example: 03FF02A2h 
Limit 3FFFFFh 

•  To set a PR from a Flash Linear Address Limit: 
•  PRlimit = (page-aligned FLAlimit) << 16  
•  PRlimit = 3FF000 << 4 = 03FF02A2h 
•  To write-protect this: PR | = 80000000h 
•  To read-protect this: PR |= 00008000h 

24	   23	   22	   21	   20	   19	   18	   17	   16	   15	   14	   13	   12	   11	   10	   9	   8	   7	   6	   5	   4	   3	   2	   1	   0	  

0	   0	   0	   	  1	   1	  	   	  1	   	  1	   	  1	   1	  	   	  1	   	  1	   	  1	   	  1	   	  1	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	  

FLAlimit	  =	  3FFFFFh	  

24	  

31	   30	   29	   28	   27	   26	   25	   24	   23	   22	   21	   20	   19	   18	   17	   16	   15	   14	   13	   12	   11	   10	   9	   8	   7	   6	   5	   4	   3	   2	   1	   0	  

W
P	   	  	   	  0	   0	   0	   1	   1	   1	   1	   1	   1	   1	   1	   	  1	   	  1	   R	  

P	   	  	   	  0	   0	   0	   1	   0	   1	   0	   1	   0	   0	   0	   1	   0	  

Protected	  Range	  Limit	  



vulnBIOS Example: Protected Range Registers 

•  On our lab E6400, the BIOS region occupies the range 
260000 – 3FFFFFh on the physical chip 

–  260000h and 3FFFFFh are Flash Linear Addresses (FLAs) 
•  The CPU/BIOS (including us using RW-E) always has Read/

Write access the BIOS region on flash 
–  Per the flash master permission settings 

BIOS	  Region	  

260000h	  (start	  of	  BIOS	  region)	  

3FFFFFh	  (BIOS	  limit)	  
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vulnBIOS Example: Protected Range Registers 

•  The previous slides set up a protected range from 2A2000h to 
3FFFFFh 

•  PR = 03FF02A2h (has not yet been read/write protected) 
•  On our lab machines, this covers a portion of our BIOS region 

BIOS	  Region	  
2A2000h	  (start	  of	  protected	  range)	  

260000h	  (start	  of	  BIOS	  region)	  

3FFFFFh	  (BIOS	  limit)	  
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vulnBIOS Example: Protected Range Registers 

•  Let’s first verify we can read this by viewing the BIOS dump 
from Copernicus 
•  PR = 03FF02A2h (has not yet been read/write protected) 
•  On our lab machines, this covers a portion of our BIOS region 

BIOS	  Region	  
2A2000h	  (start	  of	  protected	  range)	  

260000h	  (start	  of	  BIOS	  region)	  

3FFFFFh	  (BIOS	  limit,	  end	  of	  protected	  range)	  
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vulnBIOS example: Protected Range Registers 

•  First let’s establish that we have permission to read the BIOS 
region  

•  Run Copernicus and open the .bin file with your favorite hex 
editor (HxD is a good one for Windows) 

•  Observe binary range 2A2000-3FFFFFh  
•  Looks like BIOS to me! 

2A2000h	  (PR	  Start)	  

3FFFFFh	  (PR	  End	  (BIOS	  Limit))	  

.	  

.	  

.	  
.	  
.	  
.	  

.	  

.	  

.	  
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vulnBIOS example: Protected Range Registers 

•  To Write-protect a 
range:  

•  PR | = 80000000h 
•  To Read-protect a 

range:  
•  PR |= 00008000h 

•  For this example let’s 
disable reads to this 
range: 

•  Set PR0 (at SPIBAR + 
74h) to 03FF82A2h 
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vulnBIOS example: Protected Range Registers 

•  Now re-run Copernicus and view the BIOS binary file in a hex 
editor 

•  As you can see the Protected Range registers override the 
Flash Master permissions 

•  This is the BIOS region to which the CPU/BIOS Master 
otherwise “always” has permission to read and write 

2A2000h	  (PR	  Start)	  

3FFFFFh	  (PR	  End	  (BIOS	  Limit))	  

.	  

.	  

.	  
.	  
.	  
.	  

.	  

.	  

.	  
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PR Summary: 
•  Implementing Protected Ranges is an important strategy for 

locking down a system BIOS 
•  Without PR’s, any bypass of SMM’s global write-protection 

means an attacker is automatically able to modify the BIOS 
•  Protected Range register enforcement: 

–  Overrides the Flash Master permissions 
–  Prevents Reads/Writes directly from the flash, even when 

the processor is running in SMM 
•  We did not demonstrate this, but it is true 

•  Because of this, BIOS updates (or updates to protected 
ranges) must be performed before the Protected Ranges are 
configured by the BIOS 

•  Only the vendor can reliably configure PR’s since new UEFI 
BIOSes had a region of naturally changing content 
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FLOCKDN Register 

•  When we were been able to easily modify (and re-
modify) registers in the SPI configuration registers that 
are designed to protect the system 

•  For example, we can configure and modify the protected 
range registers to suit the needs of a lab 

•  But if we can change them, so can any other app 
capable of mapping SPIBAR 

•  Intel provides the FLOCKDN register to solve this 
problem 
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FLOCKDN 

•  FLOCKDN, when asserted, prevents certain configuration 
registers/bits in the SPI BAR from being changed 

•  Once asserted, FLOCKDN cannot be reset to 0 until a reset 
–  Or can it? :) Snorlax & Darth Venamis on Day 5! 

•  Although hardware-sequencing is available only in descriptor 
mode, the FLOCKDN bit still provides register lock-down 
protection when the flash is operating in non-descriptor mode 
–  Called SPI or Flash Configuration Lock-Down bit 
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1.  Flash Regions Access Permissions Register (FRAP) 
–  bits 31:24 (BMWAG) and bits 23:16 (BMRAG) 

2.  Protected Range (PR) registers 0 to 4 
–  entire register is locked 

3.  Software Sequencing Flash Control Register (SSFC) 
–  bits 18:16 
–  Configure SPI Cycle Frequency (20 MHz, 33 MHz, or 50 MHz 

[PCH only]) 
4.  Prefix Opcode Configuration Register (PREOP) 

–  entire register is locked 

5.  Opcode Type Configuration Registers (OPTYPE) 
–  Entire register is locked 

6.  Opcode Menu Configuration Register (OPMENU) 
–  Entire register is locked 

FLOCKDN Affected Registers 
(see your manual, but at the time of original class generation…) 
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SPI Lockdown Summary 1 
•  Locking down the SPI Flash is a little more complicated than 

locking down SMM 
•  For the most part, only the vendor can do this, but you can 

verify and try to implement some yourself 

•  Verify that BIOS_CNTL.BLE is set 
–  Oh wait…we’re going to talk about something in a sec that 

completely bypasses BLE :) 
–  If it’s not set, you can assert it yourself but that doesn’t mean there 

is SMI handler code present that will de-assert bit 0 
•  Verify that SMM is protecting the BIOS from writes by 

asserting bit 0 and ensuring that it is reset  
•  If supported, ensure that BIOS_CNTL.SMM_BWP is asserted 

so that the BIOS can only be written to when the processor is 
in SMM 
–  You can set this yourself. The only drawback being that you may not 

be able to update the BIOS, depending on how the vendor 
implemented updates 
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SPI Lockdown Summary 2 

•  Verify that Protected Range registers are being used 
–  You could also set these yourself but it will be a trial and error 

exercise since you won’t know what parts of the BIOS flash will 
be used to store variables (UEFI definitely and some Legacy) 

•  Set FLOCKDN to ensure the above registers can’t be 
changed 

•  The above changes you could play with won’t 
permanently hurt your system if they lock it up – they will 
all reset back to their original values on startup 

•  Verify that the Flash Master permissions are set and that 
the Flash Descriptor region cannot itself be written to 
–  You have no control over this unless it is writeable, in which case 

the most you should do is make the FD un-writeable 
–  Messing with this one could brick your system “permanently” 
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SPI Summary 
•  Locking down the SPI flash memory is the first line of 

defense against an attacker 
•  It is complicated and hard for vendors to get right 
•  It gets a little more complex in UEFI where the SPI flash 

is specifically used as a file system for storing system 
variables 
–  Can’t just set a single PR to write-protect the whole BIOS region 

•  Remember: 
•  The BIOS boots from the flash and is responsible for 

configuring all of the settings we have been discussing 
so far in the class 

•  Letting an attacker modify the BIOS means game over 
•  It’s not easy, but it’s not that hard either for an attacker to 

modify your BIOS flash	  
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SPI Summary 
•  All the settings in this section apply to both x86 and x64 

architecture 
•  All the settings in this section apply to both legacy BIOS 

and UEFI BIOS 
•  All the settings in this section apply to systems running 

legacy MCH/ICH chipsets and the new PCH chipsets 
–  Except where otherwise noted (SMM_BWP)	  
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