Malware Dynamic Analysis
Part 2

Veronica Kovah
vkovah.ost at gmail

Approved for Public Release; Distribution Unlimited. 12-5171

All materials is licensed under a Creative
Commons “Share Alike” license

http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

: your use of the work)

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

Outline

 Partl
- Background concepts & tools
- Observing an isolated malware analysis lab setup
- Malware terminology

» Part 2

- RAT exploration - Poison IVY
- Persistence techniques

- Maneuvering techniques
(How malware strategically positions itself)

See notes for citation

o 7§

¥lcauTiON

Poison lvy R

» Freely available RAT, the latest version is v.2.3.2
» Server (Implant)

- Customizable features: Encrypted communications,

registry and file manager, screen capture, key logger,
NTLM hash captures, etc.

- No need to update for new features
- Support 3rd party plugins
» E.g. port scanner, wifi enumerator (“stumbler”), etc
 Client (Controller)

- Once “server” is deployed, the server connects to a client,
whose information is built into the server.

See notes for citation

[References]
* http://www.poisonivy-rat.com/

[Image Sources]
* http://25.media.tumblr.com/tumblr_m83rfveJWO1r6dcg4ol 500.jpg

2
\
é Simple Pl Server Creation

* On the controller VM
 Start Poison lvy

- MalwareClass/samples/Poisonlvy/Poison Ivy
2.3.2.exe

* File—~New Server
» Create Profile with name “pi_agent”

» Connection: set DNS/Port to the controller VM’s
IP and set port to 3460

- 192.168.56.20:3460:0,

See notes for citation

Connection

Poison lvy

Connection [pi_agent]
& ~

Profles DNS/Patt: 19216856.20:3460:0, - Add
I Connect Through Prozy

= DNSPot |
Connection T i

1™ Hijack Proxy (1)

I Persistent (keep trying until found)
D: friogent |
Group: l—‘
Password: l;‘m‘" |1~ [Hiide Password
™ Use Key File

\ \ v

0 Cancel Nest =

Version 2,3.2 Nr. of Ports: 0 Nr. of Plugins: 0 Nr. of Connections: 0

See notes for citation

Poison lvy.

&

Profiles

wi
Connection

o)
e
Install

 |nstall [pi_agent]

v

Install

IV Start on spstem startup
v HKLM/Run Name: Lf"i?f"ii:i?fﬂim,,,,,_,J
I ActiveX Key Name: (AJ

v Copy File
Filename: i pidriver. exe

@ System Folder
€ Windows Folder
vV Copy to Altemate Data Streams

I Melt

0 Cancel

EEX

Size: 6.21 KiB

Next =

Version 2,3.2 Nr, of Ports: 0 Nr. of Plugins: 0 Nr., of Connections: 0

See notes for citation

<

\ . .
é Creating pitest.exe

~

» Advanced: Leave as itis

* Build:
- Click ‘Generate’ and save as “pitest.exe”
- Then click ‘OK =>’

* We need to copy pitest.exe to the victim VM but
will skip the step to save time

See notes for citation 8

2

\
é Client Creation

* On the controller VM
* File - New Client

 Verify ‘Listen on Port’ is set to 3460
* Click ‘Start’ button

See notes for citation

Executing Poison Ivy Server

* On the victim VM

- Execute the already prepared PI server
(MalwareClass/samples/Poisonlvy/pi_agent.exe)

* Once a server connects to the client, you will
see the following entry on the controller VM

Poison vy - [Listening on Port: 3460 {Connections: 1)]

20| File Preferences Window Help -8 x
Connections | Statistics | Settings

ID WAN LAN Con. Type = Computer User Name Acc. Type 0s CPU

) pi_agent 19216.. 19216.. Direct SPIDERMAN Jane Smith Admin WinkP 24251
< >

Version 2,3.2 Nr. of Ports: 1 Nr. of Plugins: 0 Mr. of Connections: 1

See notes for citation

\
é Think Evil!

~

» On the controller VM, double click on the ‘pi_agent’
line

Q1. Select ‘Remote Shell’ on the left panel, then on the

right panel, click the right mouse button and select

‘Activate’, Can you start a calculator to surprise the
victim? Hint: “cmd.exe /c ...”

Q2. Can you kill the calculator on the victim VM?

Q3. What's in the registry value ‘secret_agent’ under
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
Run? Anything special about it?

See notes for citation 11

@ Answers for Pl Lab (1)

Al. C:\> cmd.exe /c
c:\Windows\system32\calc.exe

A2. You can Kkill the calculator process using
Managers - Processes left-side bar

See notes for citation

12

@ Answers for Pl Lab (2)

A3. Alternate Data Stream (ADS) is attached to
C:\WINDOWS\System32
- If you go to C:\WINDOWS\System32, you won't see anything
named “pidriver.exe”. Let's find it with gmer

- Malware occasionally stores data in Alternate Data Stream
(ADS). ADS is a mechanism for attaching metadata to files.

- If you use a colon in a filename, the part after the colon will
be the metadata name/file, and the part before the colon will
be the file it's being attached to

- Explorer doesn't show ADS files, but functions like
CreateFile() can access them just fine, so the file still runs.

See notes for citation 13

Let's Start Behavioral Analysis!

See notes for citation

14

Diffing
O o 5L SN
» Take a snapshot of a clean

system state and a snapshot of a
compromised system state

» Compare before and after

* Pros: Artifacts can be observed
easily

» Cons: Can miss evidence that is
created during malware activities
and erased purposely by malware

 Tools: regshot, autoruns

See notes for citation 15

[References]
* Regshot, http://code.google.com/p/regshot/
» Mark Russinovich et al., Autoruns, http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx

[Image Sources]
* http://familyfun.go.com/assets/cms/printables/0707c_findthedifference.jpg

System Monitoring

From a clean system state, record every
individual change on system and network traffic
that appear after execution of made by the
suspicious file

Pro: Can collect all manifested changes

Cons: Often too much information and need to
weed out irrelevant data

Tools: procmon, Wireshark

See notes for citation

[Image Sources]
* http://i1.kym-cdn.com/entries/icons/original/000/007/195/im%20watching%20you%20-
%20copia.jpg

SN, A :
\%: API Tracing

&
» Hook and record important API calls made by the
suspicious process

» Pro: Can provide visibility into activity beyond the
typical file/process/registry/network shown by other
tools. Gets you a little closer to the type of
interpretation that is required when doing static
analysis.

« Cons: Often too much of information and need to weed
out irrelevant data. API-specific interpretation can take
a lot of time (but still less than static analysis ;))

* Tools: WinApiOverride, Rohitab APl Monitor

See notes for citation 17

[References]
* http://jacquelin.potier.free.fr/winapioverride32/
* http://www.rohitab.com/apimonitor

[Image Sources]
* Left, http://fc03.deviantart.net/fs39/f/2008/332/c/d/HAND_TURKEY_by_Bilious.jpg
* Right, http://dorpahdoo.files.wordpress.com/2010/11/foot-turkey.jpg

o
it ron,
i "

L e

Debugging 585

BUG FEATURE

» Set breakpoints inside the suspicious file to stop its execution at a given
location and inspect its state. Can break when it calls to important APIs.

» Pro: Provides a superset of the functionality of an API monitor

» Cons: Typically must be be done in conjunction with some basic static
analysis and assembly reading. Malware will often change its behavior or
refuse to run when being debugged, which requires a work-around.

» Tools: IDA Pro Debugger, OllyDbg, Immunity Debugger, WinDbg

* We will NOT cover this in this class, because x86 assembly is not a
prerequisite. See the Intro x86 and Intro Reverse Engineering classes to
start working with debuggers.

See notes for citation 18

[Image Sources]

* Top left, http://www.wpclipart.com/computer/humour/debugging.png

* Top right, http://www.phdcomics.com/comics/archive/phd011406s.gif

 Bottom, http://www.oraclealchemist.com/wp-content/uploads/2008/07/bug-feature.jpg

Behavioral Analysis Technigues

“Always use the easiest tool for the job” :)
Diffing

File,
Registry,
Process,
Network

Monitoring

AWESOMA POWA!

API
Tracing

Ease-of-use/
Abstraction level

Debugging

See notes for citation

19

Outline

 Partl
- Background concepts & tools
- Observing an isolated malware analysis lab setup
- Malware terminology

» Part 2

- RAT exploration - Poison IVY
- Persistence techniques

- Maneuvering techniques
(How malware strategicallypositions itself)

See notes for citation 20

Persistence

Techniques to survive after reboot

Registry Key

File System

- Startup locations

- DLL search order hijacking
- Trojanizing system files
MBR

BIOS

« Uranium Enrichment Centrifuge PLCs :P

See notes for citation 21

[References]

» Michael Sikorski et al., Practical Malware Analysis

 Nick Harbour, https://blog.mandiant.com/archives/1207

* Nicolas Falliere et al.,
http://www.symantec.com/content/en/us/enterprise/media/security _response/whitepapers/w32_st
uxnet_dossier.pdf

autoruns.exe

» Provides comprehensive list of items which
malware could use to be persistence

o | B |3

3 Autoruns - Sysinternals: www.sysinternals.com

File Entry Options Help
= WEIE

D Codecs ™ Boot Execute ‘ ™ Image Hijacks % Applnit % KnownDLLs a Winlogon
i.‘ Winsock Providers = Print Monitors %) LSA Providers £ Network Providers B Sidebar Gadgets
& Intemet Explorer 4] Scheduled Tasks | %% Services .-_%l, Drivers

&7 Everything Liﬁ Logon 4 Explorer
Autorun Entry Description ot

5’ HKLMASOFTWARE \Microsoft\windows\CurrentVersion\Run

See notes for citation 22

[References]
Mark Russinovich et al., Autoruns, http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx

§t
é autoruns.exe

* On the victim VM

» Select Options — Include Empty Locations, then press
F5 to refresh

- You can see all locations that autoruns.exe checks

- Deselect the option to have cleaner view for the rest of the
class

 Highlight a registry key, then right click -» Jump to...
- You can see the selected registry in Registry Editor

* Click the different category tabs and look around how
they are grouped

See notes for citation 23

Frequently Used Registry Key (1)

Administrator privilege is required to update HKLM
(The list is not comprehensive nor more important than others, which are not listed here)

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\"Shell” and
“Userlnit”

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\"Appinit_DIIs”

HKLM\System\CurrentControlSet\Contro\Session Manager\KnownDlIs

HKLM\System\CurrentControlSet\Services

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution Options

HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects

See notes for citation 24

Frequently Used Registry Key (2)

Without administrator privileges, malware can persist with the following registry
keys
(The list is not comprehensive nor more important than others, which are not listed here)

HKCU\Software\Microsoft\Windows\CurrentVersion\Run

HKCU\Software\Policies\Microsoft\Windows\System\Scripts\Logon

HKCU\SOFTWARE\Microsoftt\Windows NT\CurrentVersion\Winlogon\Shell

See notes for citation 25

L. Observing “Image File Execution
- Options” registry key
« Start regedit on the victim VM

» Search the following registry key
“HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Image File Execution Options”

» Check if registry key taskmgr.exe exists

* Run procexp.exe and select Options — Replace
Task Manager

* In the Registry Editor hit F5 to refresh the data
» How could malware use this to persist?

See notes for citation

26

G
A _ . .
‘é_Persstence Using File System

 Startup locations

- For the logged-in user:
%USERPROFILE%\Start Menu\Programs\Startup

- For all users:
%ALLUSERSPROFILE%\Start Menu\Programs\Startup

* Check the environment variables
- C:\> set
- To see the above two environment variables only

* C:\> echo %USERPROFILE%
* C:\> echo %ALLUSERSPROFILE%

See notes for citation

27

@
\
é_ How does IMworm persist?

» On the host machine, make sure inetsim is not running to
observe the same results for this lab

- $ sudo ps -ef | grep inetsim
 Using Autoruns on the victim VM
1) Start Autoruns, then File - save
2) Run IMworm/malware.exe
3) Press F5 to refresh Autoruns
4) File - Compare
Q1. How does the malware persist?

- Observe what files are created in which directories
- Observe what registry keys are created/modified

See notes for citation 28

@Answers for the IMworm Lab (1)

Al. Autoruns shows that malware persists by using the
following registries and the Startup directory
- Isass.exe is created in c:\WINDOWS\system

- “c:\WINDOWS\system\lsass.exe” is added to
HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\Userinit

- “c:\WINDOWS\system\lsass.exe” is added to

HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\Shell

- msconfig.exe is created in
C:\Documents and Settings\All Users\Start
Menu\Programs\Start up

See notes for citation

[References]
http://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service

@Answers for the IMworm Lab (2)

* |sass.exe and msconfig.exe are identical files.

* You cannot see the two files via Windows
Explorer or the DOS prompt. We will have a lab
to analyze how the malware hides these files

* Notice that the file names are chosen to
impersonate existing MS files

- Isass.exe: Local Security Authority
Subsystem Service

- msconfig.exe: System Configuration

See notes for citation 30

o
\
‘é_Observing IMworm with Regshot

* In this lab, we will use Regshot to observe how the
malware persists

» Using Regshot on the victim VM
1) Start Regshot (MalwareClass/tools/v5_regshot_1.8.3...)
2) Click 1st shot button — Shot
3) Run IMworm/malware.exe
4) Click 2nd shot button - Shot
5) Click Compare button

« Compare the current results with the previous lab's
results

See notes for citation

[References]
* Regshot, http://code.google.com/p/regshot/

31

&
\
‘é_ How does Hydraq persist?

» Using Autoruns on the victim VM
- Start Autoruns, then File —» save
Run Hydrag/malware.exe
- Press F5 to refresh Autoruns
- File - Compare
Q1. How does the malware persist?
- Observe what files are created in which directories

- Observe what registry keys are created/modified

See notes for citation 32

@ Answers for the Hydraqg lab

Al.

Autoruns shows that malware persists by registering

a service RaS???? (the last 4 characters are random)

Double click the newly added RaS?7??? service

ImagePath value's data is “%SystemRoot
%\System32\svchost.exe -k netsvcs”

RaS???7? runs as part of netsvcs service group

Parameters — ServiceDIl value's data is
“c:\windows\system32\rasmon.dll”

Check if RaS???? is added to
HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\SvcHost\netsvcs

See notes for citation 33

o
\
‘félbserving Hydraq with Regshot (1)

* In this lab, we will use Regshot to observe how
the malware persists

» Using Regshot on the victim VM

1) Start Regshot
(MalwareClass/tools/v5_regshot_1.8.3...)

2) Click 1st shot button — Shot
3) Run Hydrag/malware.exe
4) Click 2nd shot button — Shot
5) Click Compare button

See notes for citation 34

G
ébserving Hydraq with Regshot (2)

« Compare the current results with the previous
lab's results

* Note that HKLM\SYSTEM\CurrentControlSet is a
pointer to HKLM\SYSTEM\ControlSetO0X — check
HKLM\System\Select

See notes for citation 35

Outline

 Partl
- Background concepts & tools
- Observing an isolated malware analysis lab setup
- Malware terminology

» Part 2

- RAT exploration - Poison IVY
- Persistence techniques

- Maneuvering techniques
(How malware strategically positions itself)

See notes for citation 36

Maneuvering

Direct code injection

DLL injection

DLL search order hijacking

Asynchronous Procedure Call (APC) injection
IAT/EAT hooking
Inline hooking

See notes for citation

37

DLL/code Injection

* Load a malicious DLL
into one or more
processes

 Run malicious code on
behalf of a legitimate
process

» Bypass host-based
security software

- HIDS, Personal Firewall

See notes for citation

iexplorer.exe

evil.dll

advapi32.dll
gdi32.dll

ieframe.dll

IE process’s memory

38

DLL Injection Methods (1)

» Applinit_DLLs

- HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Windows\Applnit_ DLLs
IS set to a space or comma-separated list of
DLLs to load into processes that load
user32.dll

- On Windows Vista and newer you also
have to set a few other values in that path
like LoadApplnit_ DLLs =1 and
RequireSignedApplnit DLLs =0

See notes for citation 39

[References]

» Michael Ligh et al., Malware Analyst's Cookbook and DVD

* Applnit_DLLs in Windows 7 and Windows Server 2008 R2, http://msdn.microsoft.com/en-
us/library/windows/desktop/dd744762(v=vs.85).aspx

DLL Injection Methods (2)

* CreateRemoteThread Windows API

- Manipulate a victim process to call LoadLibrary with the
malicious DLL name

- Malicious code is located in DlIMain, which is called
once a DLL is loaded into memory

- A common API call pattern:

» OpenProcess - VirtualAllocEx -
WriteProcessMemory - GetModuleHandle -
GetProcAddress — CreateRemoteThread

See notes for citation 40

[References]
» Michael Sikorski et al., Practical Malware Analysis

DLL Injection Methods (3)

e SetWindowsHookEX Windows API

- Monitor certain types of events (see e.g. keylogger)

- Inject DLL into memory space of every process in
the same Windows “desktop” (which is a memory
organization term, not the desktop you see when
looking at your computer)

» For most intents and purposes you can think of it
as injecting the DLL into every process at lesser
or equal privilege

- For the sake of simple DLL injection, use
uncommon message type (e.g. WH_CBT)

See notes for citation 41

[References]

» Michael Sikorski et al., Practical Malware Analysis

» SetWindowsHooKEXx function, http://msdn.microsoft.com/en-
us/library/windows/desktop/ms644990(v=vs.85).aspx

DLL Injection Methods 4

» Codecave (a redirection of program execution to another location
and then returning back to the area where program execution had
previously left.)

- Inject a snippet of code, which calls LoadLibrary, to
a victim process

- Suspend a thread in the victim process and restart
the thread with the injected code

- API call pattern

* OpenProcess — VirtualAllocEx — WriteProcessMemory
- SuspendThread - GetThreadContext —
SetThreadContext - ResumeThread

See notes for citation 42

[References]
sDarawk, DLL Injection, http://www.blizzhackers.cc/viewtopic.php?p=2483118

G
A _ . .
‘éﬁbservmg Parite's Maneuvering

» Using Regshot on the victim VM

— Start Regshot (MalwareClass/tools/v5_regshot 1.8.3...)
Click 1st shot button — Shot

Run parite/malware.exe

Click 2nd shot button — Shot

Click Compare button

Q1.What is the maneuvering method?

Q2.Where is it maneuvering?
Q3.0pen question: Any theories why it's maneuvering to there?

See notes for citation 43

@ Answers for Parite Lab

Al. Applnit_ DLLs is used

- “fmsiopcps.dil” is added to
HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Windows\Applnit_DLLSs

A2. All Windows applications, which uses
user32.dll

See notes for citation

44

&
‘gébserving Onlinegames' Maneuvering (1)

 For this lab, we will use WinApiOverride (an API
monitor) to analyze onlinegames/1/malware.exe

Q1. What is the maneuvering method?
Q2. Where is it maneuvering?
Q3. What's the path of DLL being injected?

» Take a dump of the process using Process
Explorer.

See notes for citation 45

@ Answers for Onlinegames 1 Lab

Al. Direct code injection

» OpenProcess — VirtualAllocEx -
WriteProcessMemory — CreateRemoteThread

A2. Explorer.exe, OpenProcess takes PID as its
parameter

A3. C:\Windows\System32\nmdfgdsO0.dl|

* Process Explorer provides process memory
dump. In order to open the dump file, use
windbg’s File - Open Dump menu option

See notes for citation 46

&
‘gébserving Onlinegames' Maneuvering (2)

« Use WinApiOverride to analyze
onlinegames/2/malware.exe

» Hint: new process will be invoked

Q1. What is the maneuvering method?

Q2. Where is it maneuvering to?

Q3. What's the path of the DLL being injected?

See notes for citation 47

@ Answers for Onlinegames 2 Lab

Al. LoadLibrary call

- GetProcAddress — OpenProcess — VirtualAllocEx -
WriteProcessMemory — CreateRemoteThread

A2. Explorer.exe, OpenProcess takes PID as its
parameter

A3. C\WINDOWS\system32\ailin.dll

See notes for citation 48

Maneuvering

Direct code injection

DLL injection

DLL search order hijacking

Asynchronous Procedure Call (APC) injection
IAT/EAT hooking
Inline hooking

See notes for citation

49

DLL Search order hijacking (1)

* (default) DLL search order in Windows XP SP3

1.KnownDLLs and its dependent DLLs
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Cont
rol\Session Manager\KnownDLLs

== 2.Directory from which the application loaded
3.System directory (e.g. c:\WINDOWS\system32)
4.16-bit System Directory (e.g. c:\\WINDOWS\system)
5.Windows Directory
6.Current working directory
7.Directories in %Path%

See notes for citation 50

[References]
* Dynamic-Link Library Search Order (Windows), http://msdn.microsoft.com/en-
us/library/windows/desktop/ms682586(v=vs.85).aspx

DLL Search order hijacking (2)

» Also an obfuscated method to be persistent

« A malware can make a legitimate looking DLL

- Loaded by an application

- In the directory where the application is located or
the current working directory

- Which is not listed in KnownDLLs and its dependent
DLLs

- Identically named dll as the one in system32
directory

See notes for citation 51

[References]
Nick Harbour, Malware Persistence without the Windows Registry,
https://www.mandiant.com/blog/malware-persistence-windows-registry/

Asynchronous Procedure Call
(APC) Injection
» Afunction executed asynchronously when a thread is in an

alertable state

» Athread enters to alertable states when it calls some
functions such as SleepEx, WaitForSingleObjectEXx,
WaitForMultipleObjectEx

Each thread has a queue of APCs

Kernel-mode APC is generated by the system
» User-mode APC is generated by an application

API call pattern
- OpenThread - QueueUserAPC

- From kernel-space to run user-mode code:
KelnitializeAPC — KelnsertQueueApc

See notes for citation 52

[References]
» Michael Sikorski et al., Practical Malware Analysis

o

‘é_ Checking KnownDLLs

* Use Regedit

- Start —» Run.. —regedit

- Search for the following registry key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControl
Set\Control\Session Manager\KnownDLLs

» Use Winobj.exe to see all dependent DLLs of
KnownDLL

- On desktop, SysinternalSuite\Winobj.exe
- Check \KnownDlls

See notes for citation 53

o
A . .
__é_ObserVIng Nitol's Maneuvering

* For this lab, we will use Process Monitor to
analyze nitol/malware.exe

Q1. What is the maneuvering method?
Q2. Where is it maneuvering to?

Q3. Open question: Any theories why it's maneuvering to
there?

Q4. Bonus question: How does it persist?

See notes for citation 54

[References]

* Microsoft Digital Crimes Unit, Operation b70, http://blogs.technet.com/cfs-
file.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-00-80-54/3755.Microsoft-
Study-into-b70.pdf

* Rex Plantado, MSRT October '12 - Nitol: Counterfeit code isn't such a great deal after all,
http://blogs.technet.com/b/mmpc/archive/2012/10/15/msrt-october-12-nitol-counterfeit-code-isn-t-
such-a-great-deal-after-all.aspx

@ Answers for Nitol Lab

Al. DLL search order hijacking
- Ipk.dIl was written to multiple directories where
executable files exist

» C:\Program Files\Internet Explorenpk.dll
» C:\Program Files\Messengen\pk.dll etc.
- Compare where Ipk.dll is loaded from with
iexplorer.exe

A2. All executable which has Ipk.dll in the same
directory and uses Ipk.dll

Just for fun, FEASEN LR means “Foundation Classes application” according Google Translation

See notes for citation 55

Maneuvering

Direct code injection

DLL injection

DLL search order hijacking

Asynchronous Procedure Call (APC) injection
|AT/EAT hooking
Inline hooking

See notes for citation

56

|AT/EAT Hooking

» Import Address Table (IAT) holds addresses of
dynamically linked library functions

» Export Address Table (EAT) holds addresses of
functions a DLL allows other code to call

« QOverwrite one or more IAT/EAT entries to redirect a
function call to the attacker controlled code

 |IAT hooking only affects a module

« EAT hooking affects all modules loaded after EAT
hooking takes place

 |IAT & EAT hooking only affect one process memory
space

See notes for citation

57

Normal Inter-Module Function Call

WickedSweetApp.exe WickedSweetLib.dll

rSomeFunc:

push 1234 v&/\/ mov edi, edi

call [0x40112C] push ebp
add esp, 4 X mov ebp, esp
Import Address Tabl < sub esp, 0x20

0x40112C:SomeFunc e
0x401130:SomeJunk ret v
0x401134:ScumbDunk

From the Rootkits class

58

[References]
» Xeno Kovah, Rookits: What they are, and how to find them,
http://opensecuritytraining.info/Rootkits.html

IAT Hooked Inter-Module Function Call

WickedSweetApp.exe WickedWickedDIl.dll WickedSweetLib.dll

omeFunc:

IIDIl.JSh 1234 i\ C mov edi, edi
call [0x40112C] 1 EvilSomeFunc: push ebp
add esp, 4 mov ebp, esp

call SomeFunc() sub esp, 0x20

Import Address Table g
0x40112C:EvilSomeFunc ret
0x401130:SomeJunk

ret

%,

0x401134:ScumDunk

From the Rootkits class

59

Inline Hooking

» There are a few first meaningless bytes at the
beginning of a function for hooking if it is
compiled with /hotpatch option

» Overwrite the first 5 or so bytes of a function
with jJump to the attacker's code

 This redirect the program control from the called
function to the malicious code

« Execute any instructions overwritten in the first
5 bytes as the last part of the malicious code
before jumping back to wherever it came from

See notes for citation 60

[References]

* /hotpatch (Create Hotpatchable Image), http://msdn.microsoft.com/en-us/library/ms173507.aspx
» Greg Hoglund et al., Rootkits

Normal Intra-Module Function Call
WickedSweetApp.exe

v |push 1234
call SomeFunc()
add esp, 4

SomeFunc:
mov edi, edi
push ebp 2
mov ebp, esp
sub esp, 0x20
ret

From the Rootkits class

61

Inline Hooked Intra-Module Function Call

WickedSweetApp.exe

v | push 1234
call SomeFunc()
add esp, 4

SomeFunc:
jmp EvilSomeFunc

sub esp, 0x20

ret

S

WickedWickedDll.dll

MySomeFunc:
<stuff>

mov edi, edi

push ebp

mov ebp, esp
jmp SomeFunc+5

From the Rootkits class

62

Many processes, each with their own view of memory, and
the kernel schedules different ones to run at different times

PID: 123 PID: 422 PID: 17 PID: 105 PID: 4
N\ "z 4
Kernel 4 Kernel h Kernel h Kernel N[Kemnel
(“System”
“process”)
/
Userspace Userspace Userspace Userspace
Heap Heap Heap Heap
W|ckedSweetAPp.exg Calcexe Explorer.exe —
L NtdlIl.dll
Ntdll.dl A “ Ntdlldll M Kernel32.dll
MyLio1.di ,_7“‘ ‘ User32.dll Kernel32.dll _< Uszrezzall
MyLib2.dll W
)) i Kernel32.dlI] 5 Ntdil.dil
EIER S
T
See notes for citation Currenﬂy Running 63

Code

References (1)

* Slide #3

- http://www.poisonivy-rat.com/
* Slide #14

- Regshot, http://code.google.com/p/regshot/

- Mark Russinovich et al., Autoruns, http://technet.microsoft.com/en-
us/sysinternals/bb963902.aspx

* Slide #16

- Jacquelin Potier, WinApiOverride, http://jacquelin.potier.free.friwinapioverride32/
- Rohitab Batra, API Monitor, http://www.rohitab.com/apimonitor
* Slide #20
- Michael Sikorski et al., Practical Malware Analysis
- Nick Harbour, https://blog.mandiant.com/archives/1207

- Nicolas Falliere et al.,

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepa
pers/w32_stuxnet_dossier.pdf

64

References (2)

+ Slide #21

- Mark Russinovich et al., Autoruns, http://technet.microsoft.com/en-
us/sysinternals/bb963902.aspx

 Slide #28

- http://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service
Slide #30

- Regshot, http://code.google.com/p/regshot/

Slide #38

- Michael Ligh et al., Malware Analyst's Cookbook and DVD

- Applnit_DLLs in Windows 7 and Windows Server 2008 R2,
http://msdn.microsoft.com/en-
us/library/windows/desktop/dd744762(v=vs.85).aspx

Slide #39

- Michael Sikorski et al., Practical Malware Analysis

65

References (3)

Slide #40

- Michael Sikorski et al., Practical Malware Analysis

- SetWindowsHookEx function, http://msdn.microsoft.com/en-
us/library/windows/desktop/ms644990(v=vs.85).aspx

Slide #41
- Darawk, DLL Injection, http://www.blizzhackers.cc/viewtopic.php?p=2483118
Slide #49

- Dynamic-Link Library Search Order (Windows), http://msdn.microsoft.com/en-
us/library/windows/desktop/ms682586(v=vs.85).aspx

Slide #50

- Nick Harbour, Malware Persistence without the Windows Registry,
https://www.mandiant.com/blog/malware-persistence-windows-registry/

66

References (4)

* Slide #51
- Michael Sikorski et al., Practical Malware Analysis
* Slide #53

- Microsoft Digital Crimes Unit, Operation b70, http://blogs.technet.com/cfs-
file.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-00-80-
54/3755.Microsoft-Study-into-b70.pdf

- Rex Plantado, MSRT October '12 - Nitol: Counterfeit code isn't such a great deal after
all, http://blogs.technet.com/b/mmpc/archive/2012/10/15/msrt-october-12-nitol-
counterfeit-code-isn-t-such-a-great-deal-after-all.aspx

* Slide #57

- Xeno Kovah, Rookits: What they are, and how to find them,
http://opensecuritytraining.info/Rootkits.htm

* Slide #59

- /hotpatch (Create Hotpatchable Image), http://msdn.microsoft.com/en-
us/library/ms173507.aspx

- Greg Hoglund et al., Rootkits

67

