Malware Dynamic Analysis
Part 4

Veronica Kovah
vkovah.ost at gmail

Approved for Public Release; Distribution Unlimited. 12-5171

All materials is licensed under a Creative
Commons “Share Alike” license

http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

: your use of the work)

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

Outline

e Part 3

- Malware functionality

» Keylogging, Phone home, Security degrading, Self-
destruction, etc.

* Part4

- Using an all-in-one sandbox - Cuckoo Sandbox

- Malware Attribute Enumeration and
Characterization (MAEC)

- Actionable output
» Detection — Snort and Yara

See notes for citation

Malware Analysis Sandbox

» Provides file system, registry keys, and network traffic
monitoring in controlled environment and produces a well
formed report

» Using a sandbox is more efficient and sometimes more
effective

» Configure your own sandbox such as Joebox, GFI
Sandbox, and Cuckoo Sandbox.

» Use public sandbox such as ThreatExpert, GFI
ThreatTrack, and Anubis
- Do not submit malware to a public sandbox

if it reveals sensitive information about your
organization and/or customer.

See notes for citation 4

[References]

 Joe Sandbox, http://www.joesecurity.org/index.php/joe-sandbox-standalone
* GFI Sandbox, http://www.gfi.com/malware-analysis-tool

* Cuckoo Sandbox, http://www.cuckoosandbox.org

» ThreatExpert, http://www.threatexpert.com/submit.aspx

* GFI ThreaetTrack, http://www.threattrack.com/

* Anubis, http://anubis.iseclab.org/

[Image Sources]
* http://plannerwire.net/wp-content/uploads/2011/02/Playing-Sandbox_meeting_planners.gif

Cuckoo Sandbox cuc@g%

» Open source automated malware analysis system
« At the time v.0.4.2

» Analyzes PE, PDF, MS Office, PHP scripts, etc.

* Outputs JISON/HTML/MAEC reports

« Customization

Machine Manager: virtualization software

Analysis Package: how to conduct the analysis procedure
Processing Modules: how to analyze raw results

Signhatures
Reporting Modules

See notes for citation 5

[References]
» Cuckoo Sandbox Book, http://docs.cuckoosandbox.org/en/latest

[Image Sources]
* http://www.cuckoosandbox.org/graphic/cuckoo.png

<

\
é_Cuckoo Sandbox Configuration

* In this lab, we will configure Cuckoo Sandbox from the basic
installation

* $ cd ~/Malware/tools/cuckoo/conf
» 3files are relevant to our lab setting
- cuckoo.conf
* interface = vboxnetl
- virtualbox.conf
* label = victimC
* ip=192.168.57.100
- reporting.conf
» [maecll]
enabled = on

See notes for citation

~

\
é Poison lvy

* Open three terminals
* #1 terminal, run inetsim
- $ sudo inetsim
» #2 terminal, run Cuckoo Sandbox
- $ cd ~/MalwareClass/tools/cuckoo
- $ python ./cuckoo.py
» #3 submit piagent.exe to Cuckoo
- $ cd ~/MalwareClass/tools/cuckoo/utils

- $ python ./submit.py
~/MalwareClass/samples/Poisonlvy/piagent.exe

See notes for citation

Results

» Task results are generated under {Cuckoo
Root}/storage/analysis/[task number]/

- {Cuckoo Root} = ~/MalwareClass/tools/cuckoo

- reports directory includes reports in different formats

- logs directory includes raw data named <process id>.csv
- shots directory includes screen shots

- files directory includes dropped files. You can then run dropped
executables through on their own

» Submitted sample will be copied to {Cuckoo
Root}/storage/binariessMDSNAME, where MD5NAME is the
md>5 of the submitted sample

- A symbolic link (named binary) exists under the task result
directory

See notes for citation

~

\ .
é Poison vy Results

*$cd

~/MalwareClass/tools/cuckoo/storage/analysis/1/re
ports

* $ firefox report.html &
« $ edit report.maec-1.1.xml

- Remove “xsi” from “xsi:schemalocation” in
<MAEC_Bundle> tag

- Something is wrong and it's just a quick and dirty
fix to see the xml with Firefox

« $ firefox report.maec-1.1.xml &

See notes for citation

MAEC (Malware Attribute
Enumeration and Characterization)

» “a standardized language for encoding and
communicating high-fidelity information about
malware based upon attributes such as
behaviors, artifacts, and attack patterns”

https://maec.mitre.org/about/index.html

« A standard is necessary to provide a common
way to share malware analysis results among
organizations to avoid duplicate, inaccurate
work

See notes for citation 10

[References]
* MAEC, https://maec.mitre.org

MAEC (Malware Attribute
Enumeration and Characterization)

« Standard communication method among

- human < human
- human < tool
| | MAEC
- tool~too Schema
* MAEC Schema

BehaviorType

- Defines syntax <

Key MAEC Schema Components

http://maec.mitre.org/language/schema.htm
« Would be very useful to'search openmalware.org
samples based on attributes, could make a new
search engine: “Ask MAEC!”

See notes for citation

[References]
« lvan Kirillov et al. Malware Attrribute Enumeration and Characterization,
https://maec.mitre.org/about/docs/Introduction_to MAEC_white_paper.pdf

[Image Sources]
* https://maec.mitre.org/images/schema.qgif

I\
é Parite

~

» Submit parite sample to Cuckoo Sandbox

- $ cd ~/MalwareClass/tools/cuckoo/utils

- $ python submit.py
~/MalwareClass/samples/parite/malware.exe

Q1.Does this drop files with randomized names?
Q2.How does it maneuver?

Q3.How does it persist?

Q4.Does it have self-avoidance?

Q5.Does it self-destruct?

Q6.Where does it try to connect to?

See notes for citation

12

@ Answers for Parite Lab

Al. Yes
- C:\\DOCUME~1\student\LOCALS~1\Temp\?tal.tmp

A2. OpenProcess (PID=1760) - VirtualAllocEx -
NtWriteVirtualMemory — CreateRemoteThread

- Now you are interested in the process name
of PID 1760 :D

See notes for citation 13

@ Answers for Parite Lab

A3. Set a registry value
Software\Microsoft\Windows\CurrentVersion\RU

N\fmsiocps

- we don't know exact data in the value based on
cuckoo result

A4. Yes, mutex “Residented” is created
A5. Not explicitly

A6. No explicit network activity, we don't know if
the malware is waiting for an event or just
sleeping

See notes for citation 14

-%‘ Nitol

~

« Submit nitol sample to Cuckoo Sandbox

- $ cd ~/MalwareClass/tools/cuckoo/utils

- $ python submit.py
~/MalwareClass/samples/nitol/malware.exe

Q1.Does this drop files with randomized names?
Q2.How does it maneuver?

Q3.How does it persist?

Q4.Does it have self-avoidance?

Q5.Does it do self-destruction?

Q6.Where does it try to connect to?

See notes for citation

15

@ Answers for Nitol

Al. Yes
- One file name is random:

A2. We cannot identify maneuvering technique from the
cuckoo's result

- SetWindowsHookEx? Nope, the hooks (WH_MSGFILTER
(-1) and WH_CBT (5)) are for its own process

A3. Registered an auto-start service
- HKLM\System\CurrentControlSet\Services\Distribuijq
- CreateSerivce(), StartService() API calls

See notes for citation

@ Answers for Nitol

A4.No, false positive
- ShimCacheMutex is opened by side effect
A5. Yes, it moves itself to

- C:\DOCUME~1\student\LOCALS~1\Temp\SOFT
WARE.LOG

AG. tutwl.3322.0rg

- Microsoft took down the entire 3322.org (google
“Operation b70") but they came back online after
agreeing to clean out malware users

See notes for citation 17

I\
é IMworm

~

» Submit nitol sample to Cuckoo Sandbox

- $ cd ~/MalwareClass/tools/cuckoo/utils

- $ python submit.py
~/MalwareClass/samples/IMworm/malware.exe

Q1.Does this drop files with randomized names?
Q2.What's the file's original name?

Q3.How does it persist?

Q4.Does it have self-avoidance?

Q5.Does it do self-destruction?

Q6.Where does it try to connect to?

See notes for citation

18

@ Answers for IMworm
Al. no:
A2. worm2007.exe

A3. Answer for persistence

- Copy itself to a start up directory

» Copy to C:\Windows\Isass.exe then create
a process

» C:\Document and Settings\All Users\Start
Menu\Programs\Startup\MSconfig.exe

See notes for citation 19

[Image Sources]
* http://i0.kym-cdn.com/entries/icons/original/000/007/423/untitle.JPG

@ Answers for IMworm

- Sets registry value:

« SOFTWARE\WMicrosoft\Windows
NT\CurrentVersion\Winlogon\Userinit = ?
(maybe, maybe not)

 NOTE: It's not setting Run registry key
A4. No, false positive

- ShimCacheMutex is opened by side effect
A5. No apparent self-destruction
A6. Tried to get http://quicknews.info/YMWorm.exe

See notes for citation

20

Outline

e Part 3

- Malware functionality

» Keylogging, Phone home, Security degrading, Self-
destruction, etc.

 Part4
- Using an all-in-one sandbox — Cuckoo Sandbox

- Malware Attribute Enumeration and
Characterization (MAEC)

- Actionable output
* Detection — Snort and Yara

See notes for citation

21

Yara

* Open source tool to identify and classify
malicious files based on textual or binary
patterns

* Light-weight way of performing signature
checks

« Can be used for any binary data (exe, pdf,
pcaps, etc)

« Useful in an email server for tip-offs, and
filtering

See notes for citation

[References]
* yara-project, http://code.google.com/p/yara-project/

22

Yara Signature

rule silent_banker : banker

{
meta:
description = "This is just an example"
thread_level = 3
in_the_wild = true
strings:
$a = {6A 40 68 00 30 00 00 6A 14 8D 91}
$b = {8D 4D B@ 2B C1 83 (@ 27 99 6A 4E 59 F7
Fo}
$c = "UVODFRYSIHLNWPEJXQZAKCBGMT"
condition:
$a or $b or $%c http://code.google.com/p/yara-project/

}

See notes for citation

23

Yara Signature

 |dentifier

- Any alphanumeric characters and underscores but
cannot start with a number
 String definition
- A string identifier starts with $ followed by
alphanumeric character and underscores

- Values
» Text strings enclosed by double quotes
» Hex strings enclosed by curly brackets
* Regular expression enclosed by slashes

See notes for citation

[References]
* Victor Manuel Alvarez, YARA User's Manual 1.6, http://code.google.com/plyara-
project/downloads/detail?name=YARA%20User%27s%20Manual%201.6.pdf

24

Yara Signature

» Condition

- Boolean operators
* and, or, not

- Relational operators
e >= <= <, > == I=

- Arithmetic and bitwise operators
o+, -, %, &, |, <<, >>, ~

« Counting strings strings:
$a = “text”
condition:
H#a ==

See notes for citation

25

I\
é‘ Bot classification

~

» We will make a yara signature for a bot malware in this lab
« Identify characteristic strings from the agobot sample
- $ strings ~/MalwareClass/samples/agobot/malware.exe | less

* Make an yara signature using combination of the identified
strings

- Create a file (e.g. detection.yar) for the signature
* To run yara

- $ yara detection.yar ~/Malware/samples/agobot/malware.exe

See notes for citation 26

One possible answer

rule Agobot
{
strings:
$msg = "PhatBNC" nocase
$confl = "ddos_maxthreads"
$conf2 = "scan_maxsockets"
$conf3 = "scan_maxthreads"
$cmdl = "do_stealth”
$cmd2 = "do_avkill"
$cmd3 = "do_speedtest”
$cmd4 = "bot_topiccmd"
$cmd5 = "bot_meltserver"
$cmd6 = "bot_randnick”
condition:

(#msg > 10) and $confl and $conf2 and $conf3
and (any of ($cmd1, $cmd2, $cmd3, $cmd4, $cmd5, $cmd6))

See notes for citation

27

Snort

» Open source network intrusion
detection/prevention tool (NIDS/NIPS)

* 3 modes

- Sniffer: read packets off the network and display on
the screen

- Packet Logger: logs the packets to a log file

- NIDS: analyze network traffic and match with user-
defined signatures and make actions (e.g. alert,
drop, etc.)

See notes for citation 28

[References]
*Snort, http://www.snort.org/
*Snort Users Manual 2.9.4, http://s3.amazonaws.com/snort-org/www/assets/166/snort_manual.pdf

[Image Sources]
*http://4.bp.blogspot.com/_2IvFH57W8HCc/TPfpzDtwQwI/AAAAAAAAAFK/YFngxr8jLgl/s1600/snort_|
arge.qgif

Snort

» Preprocessors provides various pre-detection
processing

Frag3: IP defragmentation
Streamb5: TCP/UDP session tracking
RPC decode: RPC record defragmentation

HTTP Inspect: HTTP fields identification,
normalization etc.

» A preprocessor may depends on the other

 Supports custom preprocessor

See notes for citation 29

Snort Sighatures

» Detection can be implemented in preprocessor, Snort
(text) rules, or SO (shared object) rules.

e Snort rules
SRC IP PORT DEST IP PORT

alert tcp any any -> any 80 (msg:"No deadbeef”; content."DEADBEEF";)

* Rule headers

Rule action tells Snort what to do (e.g. alert, log, drop)

IP addresses in Classless Inter-Domain Routing (CIDR)
notation

Port numbers

Direction operator should be “->” or “<>" (bidirectional)

See notes for citation 30

[References]
* Pre-Compile SO Rules: Supported Platforms, https://www.snort.org/snort-rules/shared-object-rule

Snort Sighatures

* Rule options

Separated by semicolon (;)

msg: message to be displayed in log
content: ascii string or binary to match

content modifiers

* nocase, depth, offset, distance, within, http_header,
http_client_body, http_uri, file_data

pcre: match can be written in perl compatible
regular expression

- flags: checks TCP flag bit

See notes for citation 31

7
A . .
‘é‘ Detect Beaconing Traffic

» We will write a NDIS signature for this lab on the host
machine

« $ wireshark ~/Malware/misc/darkshell.pcap &

» Make a “log” directory under the home directory
- $ mkdir ~/log

 Let's run Snort with the existing Snort rules

- $ snort -c /etc/snort/snort.conf -r ~/Malware/misc/darkshell.pcap -I
~/log

- A couple of errors are expected

- To fix the permission violation error
$ sudo usermod -aG snort student

- Fix HOME_NET to 192.168.57.0/24 in /etc/snort/snort.conf

See notes for citation 32

7
A . .
‘é‘ Detect Beaconing Traffic

* Open a new file to write a Snort rule

* You can start with the following template and fill
up detection rule options

- alert tcp any any -> any any (<your rule options
here>)

» To test your rule
- $ snort -c <rule file path> -r <pcap file path> - ~/log

See notes for citation 33

Phone Home Format

/I Darkshell bot-to-CnC comms
struct {
/I Header:
DWORD dwMagic; // always 0x00000010 for Darkshell
/I Obfuscated section:
char szComputerName[64]; // Name of infected host, NULL-terminated/extended
char szMemory[32]; // Amount of memory in infected host; format "%dMB"; NULL-
terminated/extended
char szWindowsVersion[32]; // Specifies version of Windows; one of: Windows98, Windows95,
/I WindowsNT, Windows2000, WindowsXP, Windows2003, or Win Vista;
/I NULL-terminated/extended
char szBotVersion[32]; // Specifies version of bot; NULL-terminated/extended;
DWORD szUnknown1[4]; // ??? - Always NULL-terminated 'n'
/] Binary section:
char szPadding1[32]; // Filled with 0x00 bytes
WORD wUnknown2; // ??? - We have seen 0x00AO0, 0x00BO, and 0x00CO
WORD wUnknown3; // ??? - Always OXFD7F
char szPadding2[20]; // Filled with Ox00 bytes
WORD wUnknown4; // ??? - Always OXxBOFC
BYTE cUnknown5; // ??? - We have seen 0xD6, 0xD7, OXE6, OXxE7, and OxF1
BYTE cZero; // Always 0x00
DWORD dwsSignature[8]; // Always 0x00000000, OxFFFFFFFF, 0x18EE907C, 0X008E917C,
1 OxFFFFFFFF, OXFA8D91&C, 0x25D6907C, 0XCFEA907C
b

http://ddos.arbornetworks.com/2011/01/darkshell-a-ddos-bot-targetting-vendors-of-industrial-
food-processing-equipment/

What We Learned in Part 1

« Background concepts & tools

- PE files, Windows Libraries, Processes, Threads,
Registry, Windows Services,

— TrID, Process Explorer, Process Monitor,
PsServices, Wireshark, CFF Explorer

» Observing an isolated malware analysis lab
setup

- Ubuntu, Virtualbox, inetsim
» Malware terminology

See notes for citation 35

What We Learned in Part 2

* RAT exploration - Poison IVY
- Server and client
 Persistence techniques
- Registry, File system
- Autoruns, Regshot

* Maneuvering techniques
(How malware strategically positions itself)

- Code and DLL injection, DLL search order
hijacking, IAT, EAT, and inline hooking

- Procmon, WinApiOverride, Winobj

See notes for citation

36

What We Learned in Part 3

« Malware functionality

Key logging

Phone home

Beaconing

Self-Avoidance

Security degrading

Simple stealth techniques (non-rootkit techniques)

» Self-destruction
* Hiding files

See notes for citation

37

What We Learned in Part 4

» Using an all-in-one sandbox — Cuckoo Sandbox
- Good for automation and the first cut

» Malware Attribute Enumeration and
Characterization (MAEC)

 Actionable output — detection signatures

- Snort: network intrusion detection/prevention
system

- Yara: Malware identification and classification tool

See notes for citation 38

Sample MD5s

» 101d00e77b48685bc02c1ff9672e1e94 eldorado/malware.exe

» 9250281b5a781edbh9b683534f8916392 agobot/malware.exe

» 3349eab5cc4660bafab502f7565ff761d conficker/malware.exe

» 9f880ac607cbd7cdfffa609c5883c708 Hydrag/malware.exe

* a10b9b75e8c7db665cfd7947e93b999b parite/malware.exe

» ¢53435038a5b35ec35ec52d1694a5ba0 keylogger/malware.exe

» 4a29d41dfda9cfcbcde4d42b4bbb00aa Darkshell/malware.exe

» 1a36fb10f0a6474a9fea23ee4139d13e nitol/malware.exe

» db19c23c5f77a697500075¢790cd331c IMworm/malware.exe

* a9a2fb545068995f30df22f8a3f22a10 onlinegames/2/malware.exe
* f1bae35d296930d2076b9d84ba0c95ea onlinegames/l/malware.exe

All samples are from openmalware.org

See notes for citation

. Malicious Web
Required . .
) rOxOr Skill Tree Analysis: Flash &

"Malware analysis" JavaScript

b.

(R —

E Ap p Malicious Document
prove

Recommended

Analysis: Office&PDF
2 day, Greg Back?

Intended Future

7

Memory Analysis
2 day, TBD

-
-
-
- I
-

7’
I
- -
-

Go here next

The End

Or is it?

[Image Sources]
* http://wikiality.wikia.com/File:Colbertbrow.gif

References (1)

* Slide #3

- Joe Sandbox, http://www.joesecurity.org/index.php/joe-sandbox-
standalone

- GFI Sandbox, http://www.gfi.com/malware-analysis-tool

- Cuckoo Sandbox, http://www.cuckoosandbox.org

- ThreatExpert, http://www.threatexpert.com/submit.aspx

- GFI ThreaetTrack, http://www.threattrack.com/

- Anubis, http://anubis.iseclab.org/
* Slide #4

- Cuckoo Sandbox Book, http://docs.cuckoosandbox.org/en/latest
* Slide #9

- MAEC, https://maec.mitre.org

References (2)

* Slide #10

- Ivan Kirillov et al. Malware Attrribute Enumeration and Characterization,
https://maec.mitre.org/about/docs/Introduction_to_ MAEC_white_paper.pdf

 Slide #21
- yara-project, http://code.google.com/p/yara-project/
* Slide #23

- Victor Manuel Alvarez, YARA User's Manual 1.6, http://code.google.com/plyara-
project/downloads/detail?name=YARA%20User%27s%20Manual%201.6.pdf

* Slide #27
- Snort, http://www.snort.org/

- Snort Users Manual 2.9.4, http://s3.amazonaws.com/snort-
org/www/assets/166/snort_manual.pdf

+ Slide #29

- Pre-Compile SO Rules: Supported Platforms, https://www.snort.org/snort-
rules/shared-object-rule

