Malware Dynamic Analysis
Part 5

Veronica Kovah
vkovah.ost at gmail

http://opensecuritytraining.info/MalwareDynamicAnalysis.html
All materials is licensed under a Creative Commons “Share Alike” license

http://creativecommons.org/licenses/by-sa/3.0/

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.
Where are we at?

- **Part 5: Using an all-in-one sandbox**
 - Cuckoo Sandbox
 - Malware Attribute Enumeration and Characterization (MAEC)
 - Different sandbox results comparison
- **Part 6: Actionable output**
 - Yara
 - Snort
Malware Analysis Sandbox

• Provides file system, registry keys, and network traffic monitoring in controlled environment and produces a well formed report
• Using a sandbox is more efficient and sometimes more effective
• Configure your own sandbox such as Joebox, GFI Sandbox, and Cuckoo Sandbox.
• Use public sandbox such as ThreatExpert, GFI ThreatTrack, and Anubis
 — Do not submit malware to a public sandbox if it reveals sensitive information about your organization and/or customer.

[References]
• Cuckoo Sandbox, http://www.cuckoosandbox.org
• GFI ThreatTrack, http://www.threattrack.com/
• Anubis, http://anubis.iseclab.org/

[Image Sources]
• http://plannerwire.net/wp-content/uploads/2011/02/Playing-Sandbox_meeting_planners.gif
Cuckoo Sandbox

- Open source automated malware analysis system
- Analyzes PE, PDF, MS Office, PHP scripts, etc.
- Outputs JSON/HTML/MAEC reports
- Customization
 - Machinery Modules: virtualization software
 - Analysis Package: how to conduct the analysis procedure
 - Processing Modules: how to analyze raw results
 - Signatures
 - Reporting Modules
 - Auxiliary Modules: to be executed in parallel to every analysis

[References]

[Image Sources]
• http://www.cuckoosandbox.org/graphic/cuckoo.png
Poison Ivy

• Revert the *victim* VM to “cuckoo” snapshot
• Open three terminals
• Terminal #1, run inetsim
 — $ sudo inetsim
• Terminal #2, run Cuckoo Sandbox v1.0
 1) $ cd ~/MalwareClass/tools/cuckoo
 2) Edit conf/auxiliary.conf (to sniff on vboxnet1)
 3) $ python ./cuckoo.py
• Terminal #3, submit piagent.exe to Cuckoo
 1) $ cd ~/MalwareClass/tools/cuckoo/utils
 2) $ python ./submit.py~/MalwareClass/samples/PoisonIvy/piagent.exe
Cuckoo Sandbox Results

- Task results are generated under `{Cuckoo Root}/storage/analysis/[task number]/`
 - `{Cuckoo Root} = ~/MalwareClass/tools/cuckoo`
 - `reports` directory includes reports in different formats
 - `logs` directory includes raw data named `<process id>.bson`
 - `shots` directory includes screen shots
 - `files` directory includes dropped files. You can then run dropped executables through on their own

- Submitted sample will be copied to `{Cuckoo Root}/storage/binaries/MD5NAME`, where MD5NAME is the md5 of the submitted sample
 - A symbolic link (named `binary`) exists under the task result directory
Poison Ivy Results

- `$ cd ~/MalwareClass/tools/cuckoo/storage/analysis/1/reports`
- `$ firefox report.html &`
- `$ gedit report.json &`
- `$ firefox report.maec-4.0.1.xml &`
Malware Attribute Enumeration and Characterization (MAEC)

• “a standardized language for encoding and communicating high-fidelity information about malware based upon attributes such as behaviors, artifacts, and attack patterns”
 https://maec.mitre.org/about/index.html

• A standard is necessary to provide a common way to share malware analysis results among organizations to avoid duplicate, inaccurate work

[References]
• MAEC, https://maec.mitre.org
MAEC (2)

- Supported tools
 - Native: Cuckoo Sandbox
 - Via a translator: Anubis, ThreatTrack, ThreatExpert
- Would be very useful to search openmalware.org samples based on attributes, could make a new search engine: “Ask MAEC!”

[References]
- MAEC in Use, http://maec.mitre.org/about/inuse.html

[Image Sources]
Parite (1) – Cuckoo v1.0

• We will learn how to interpret a sandbox’s results based on what we have learned so far
• Submit parite sample to Cuckoo Sandbox v1.0
 1) $ cd ~/MalwareClass/tools/cuckoo/utils
 2) $ python submit.py ~/MalwareClass/samples/parite/malware.exe
• Kill the cuckoo.py process with ctrl-c once the analysis is done
Parite (2) - Cuckoo v0.5

- Install Cuckoo Sandbox v0.5’s agent on the \textit{victim} VM
 - Copy agent.py from the host machine to the \textit{victim} VM
 - Use WinSCP on the \textit{victim} VM
 - It’s located at ~/Updates/cuckoo/agent/agent.py in the host machine
 - Open a DOS terminal and start the agent
 C:\python27\python.exe c:\agent.py
 - Make a snapshot with the name “cuckoo05”
Parite (3) - Cuckoo v0.5

• Terminal #2, run Cuckoo Sandbox v0.5
 1) $ cd ~/Updates/cuckoo
 2) $ python ./cuckoo.py

• Terminal #3, submit parite sample to Cuckoo
 1) $ cd ~/Updates/cuckoo/utils
 2) $ python submit.py ~/MalwareClass/samples/parite/malware.exe
Parite (4)

- Consult public sandbox results as well under ~/Updates/public_sandbox_results/parite/
 - anubis: $ evince ./anubis/report.pdf
 - threatexpert: $ firefox ./threatexpert/report.html
 - threattrack: $ evince ./threattrack/analysis.pdf

Q1. (SKIP) Does this drop files with randomized names?
Q2. How does it persist?
Q3. How does it maneuver?
Q4. Does it have self-avoidance?
Q5. Does it self-destruct?
Q6. Where does it try to connect to?
Answers for Parite Lab (1)

A2.

– Created “Run” registry value
 HKLM\Software\Microsoft\Windows\
 \CurrentVersion\RUN\fmsiocps
to “C:\Windows\fmsiocps.exe”

– Modified “AppInit_DLLs” registry value
 HKLM\Software\Microsoft\Windows NT\
 \CurrentVersion\Windows\AppInit_DLLs
to “fmsiocps.dll”
Answers for Parite Lab (2)

A3.

– Dll injection via ApInit_DLLs
– Dll injection using CreateRemoteThread() API
 • OpenProcess (PID=1760) → VirtualAllocEx → NtWriteVirtualMemory → CreateRemoteThread
 • Now you are interested in the process name of PID 1760 :D

A4. Yes, mutex “Residented” is created

A5. Yes, the submitted sample file was deleted

A6. 192.5.5.241 (per ThreatExpert result)
Nitol

- Consult “Parite” lab slides for how to submit the sample to both versions of Cuckoo Sandbox and answer the following questions about Nitol:
 Q1. (SKIP) Does this drop files with randomized names?
 Q2. How does it persist?
 Q3. How does it maneuver?
 Q4. Does it have self-avoidance?
 Q5. Does it do self-destruction?
 Q6. Where does it try to connect to?
Answers for Nitol (1)

A2.

1) Registered an auto-start service
 – HKLM\System\CurrentControlSet\Services \Distribuijq

2) Created lpk.dll under multiple directories for DLL search order hijacking; this technique also makes the malware persistent

A3. DLL search order hijacking (lpk.dll)
Answers for Nitol (2)

A4. Yes, Distribuizj (per ThreatExpert result)
 – ShimCacheMutex is opened by side effect

A5. Yes, it moves itself to
 C:\DOCUME~1\student\LOCALS~1\Temp\SOFTWARE.LOG

A6. tutwl.3322.org
 – Microsoft took down the entire 3322.org (google
 “Operation b70”) but they came back online after
 agreeing to clean out malware users

[References]
• Andrew Davis, Leveraging the Application Compatibility Cache in Forensic
 Whitepaper_ShimCacheParser.pdf
IMworm

- Consult “Parite” lab slides for how to submit the sample to both versions of Cuckoo Sandbox and answer the following questions about IMworm:

 Q1. {SKIP} Does this drop files with randomized names?
 Q2. What’s the file’s original name?
 Q3. How does it persist?
 Q4. Does it have self-avoidance?
 Q5. Does it do self-destruction?
 Q6. Where does it try to connect to?
Answers for IMworm (1)

A2. worm2007.exe

A3. Using file system and registry key
 – Created C:\Document and Settings\All Users\Start Menu\Programs\Startup\MSconfig.exe, which is a copy of the malware itself
 – Set registry values
 HKLM\SOFTWARE\Microsoft\Windows NT \CurrentVersion\Winlogon\Userinit & Shell to C:\Windows\system\lsass.exe, which is a copy of the malware itself
Answers for IMworm (2)

A4. No apparent mutex
 – ShimCacheMutex is opened by side effect
A5. No apparent self-destruction
A6. Tried to get
http://quicknews.info/YMWorm.exe