
Introduction to Intel x86-64
Assembly, Architecture,

Applications, & Alliteration

Xeno Kovah – 2014
xkovah at gmail

All materials is licensed under a Creative
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's ‘Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

ShiftExample1.c
#include <stdio.h>
#include <stdlib.h>
!
int main(int argc, char **argv)
{
 unsigned int a, b, c;
 a = atoi(argv[0]);
 b = a * 8;
 c = b / 16;
 return c;
}

main:
0000000140001010 sub rsp,28h
0000000140001014 mov rcx,qword ptr [rdx]
0000000140001017 call qword ptr [40008368h]
000000014000101D shl eax,3
0000000140001020 shr eax,4
0000000140001023 add rsp,28h
0000000140001027 ret

Whither the multiply and divide instructions?!

Note: Compiled with “Maximize Speed”, to clear away a bit of cruft

SHL - Shift Logical Left
• Can be explicitly used with the C “<<” operator
• First operand (source and destination) operand is an r/mX
• Second operand is either cl (lowest byte of ecx), or a 1 byte

immediate. The 2nd operand is the number of places to shift.
• It multiplies the register by 2 for each place the value is shifted.

More efficient than a multiply instruction.
• Bits shifted off the left hand side are “shifted into” (set) the carry

flag (CF)
• For purposes of determining if the CF is set at the end, think of it

as n independent 1 bit shifts.

00110011b (bl - 0x33)

result 11001100b (bl - 0xCC) CF = 0

shl bl, 2

21

00110011b (bl - 0x33)

result 10011000b (bl - 0x98) CF = 1

shl bl, 3

Book p. 224

SHR - Shift Logical Right
• Can be explicitly used with the C “>>” operator
• First operand (source and destination) operand is an r/mX
• Second operand is either cl (lowest byte of ecx), or a 1 byte

immediate. The 2nd operand is the number of places to shift.
• It divides the register by 2 for each place the value is shifted.

More efficient than a multiply instruction.
• Bits shifted off the right hand side are “shifted into” (set) the carry

flag (CF)
• For purposes of determining if the CF is set at the end, think of it

as n independent 1 bit shifts.

22

00110011b (bl - 0x33)

result 00001100b (bl - 0x0C) CF = 1

shr bl, 2
00110011b (bl - 0x33)

result 00000110b (bl - 0x06) CF = 0

shr bl, 3

Book p. 225

ShiftExample1.c takeaways

#include <stdio.h>
#include <stdlib.h>
!
int main(int argc, char **argv)
{
 unsigned int a, b, c;
 a = atoi(argv[0]);
 b = a * 8;
 c = b / 16;
 return c;
}

main:
0000000140001010 sub rsp,28h
0000000140001014 mov rcx,qword ptr [rdx]
0000000140001017 call qword ptr [40008368h]
000000014000101D shl eax,3
0000000140001020 shr eax,4
0000000140001023 add rsp,28h
0000000140001027 ret

• When a multiply or divide is by a power of 2, compilers prefer shift
instructions as a more efficient way to perform the computation

That’s the power of love sign!

#include <stdio.h>
#include <stdlib.h>
!
int main(int argc, char **argv)
{
 unsigned int a, b, c;
 a = atoi(argv[0]);
 b = a * 8;
 c = b / 16;
 return c;
}

#include <stdio.h>
#include <stdlib.h>
!
int main(int argc, char **argv)
{
 int a, b, c;
 a = atoi(argv[0]);
 b = a * 8;
 c = b / 16;
 return c;
}

http://4.bp.blogspot.com/-FAaWCtna3mw/Tc69R-mPbFI/AAAAAAAABxA/Nriylz_dc20/s1600/hlhlfr.jpeg

ShiftExample2.c

#include <stdio.h>
#include <stdlib.h>
!
int main(int argc, char **argv)
{
 int a, b, c;
 a = atoi(argv[0]);
 b = a * 8;
 c = b / 16;
 return c;
}

main:
0000000140001010 sub rsp,28h
0000000140001014 mov rcx,qword ptr [rdx]
0000000140001017 call qword ptr [40008368h]
000000014000101D shl eax,3
0000000140001020 cdq
0000000140001021 and edx,0Fh
0000000140001024 add eax,edx
0000000140001026 sar eax,4
0000000140001029 add rsp,28h
000000014000102D ret

main:
0000000140001010 sub rsp,28h
0000000140001014 mov rcx,qword ptr [rdx]
0000000140001017 call qword ptr [40008368h]
000000014000101D shl eax,3
0000000140001020 shr eax,4
0000000140001023 add rsp,28h
0000000140001027 ret

Vs

Changed

CD* is added as an VS-ism. It’s necessary for the math to work out, but I feel
like I’ve only run into it once ever in the wild. So I don’t consider it that
important for beginners to know and I’m skipping it. But you can feel free to
come back and read this code once we’ve gone through the RTFM section.

main:
0000000140001010 sub rsp,28h
0000000140001014 mov rcx,qword ptr [rdx]
0000000140001017 call qword ptr [40008368h]
000000014000101D shl eax,3
0000000140001020 cdq
0000000140001021 and edx,0Fh
0000000140001024 add eax,edx
0000000140001026 sar eax,4
0000000140001029 add rsp,28h
000000014000102D ret

SAR - Shift Arithmetic Right
• Can be explicitly used with the C “>>” operator, if operands are signed
• First operand (source and destination) operand is an r/mX
• Second operand is either cl (lowest byte of ecx), or a 1 byte immediate.

The 2nd operand is the number of places to shift.
• It divides the register by 2 for each place the value is shifted. More

efficient than a multiply instruction.
• Each bit shifted off the right side is placed in CF.

10110011b (bl - 0xB3)

result 00101100b (bl - 0x2C)

shr bl, 2
10110011b (bl - 0xB3)

result 11101100b (bl - 0xEC)

sar bl, 2

00110011b (bl - 0x33)

result 00001100b (bl - 0x0C)

00110011b (bl - 0x33)

result 00001100b (bl - 0x0C)
==

!=

Book p. 224
23

mov cl, 2; sal bl, cl mov cl, 2; sal bl, cl

SAL - Shift Arithmetic Left
• Actually behaves exactly the same as SHL!
• First operand (source and destination) operand is an r/mX
• Second operand is either cl (lowest byte of rcx), or a 1 byte immediate.

The 2nd operand is the number of places to shift.
• It divides the register by 2 for each place the value is shifted. More

efficient than a multiply instruction.
• Each bit shifted off the left side is placed in CF.

10110011b (bl - 0xB3)

result 11001100b (bl - 0xCC)

shl bl, 2
10110011b (bl - 0xB3)

result 11001100b (bl - 0xCC)

sal bl, 2

00110011b (bl - 0x33)

result 11001100b (bl - 0xCC)

mov cl, 2; sal bl, cl
00110011b (bl - 0x33)

result 11001100b (bl - 0xCC)

mov cl, 2; sal bl, cl

==

==

Book p. 225
24

ShiftExample2.c takeaways

int main(){
 int a, b, c;
 a = 0x40;
 b = a * 8;
 c = b / 16;
 return c;
}

main:
0000000140001010 sub rsp,28h
0000000140001014 mov rcx,qword ptr [rdx]
0000000140001017 call qword ptr [40008368h]
000000014000101D shl eax,3
0000000140001020 cdq
0000000140001021 and edx,0Fh
0000000140001024 add eax,edx
0000000140001026 sar eax,4
0000000140001029 add rsp,28h
000000014000102D ret

• Compilers still prefer shifts for mul/div over powers of 2
• But when the operands are signed rather than unsigned, it must use

different instructions, and potentially do more work (than the
unsigned case) to deal with a multiply

• CDQ isn’t important for beginners to know, left as an exercise for the
reader for later ;)

Instructions we now know (26)
• NOP
• PUSH/POP
• CALL/RET
• MOV
• ADD/SUB
• IMUL
• MOVZX/MOVSX
• LEA
• JMP/Jcc (family)
• CMP/TEST
• AND/OR/XOR/NOT
• INC/DEC
• SHR/SHL/SAR/SAL

