
Introduction to Intel x86-64
Assembly, Architecture,

Applications, & Alliteration

Xeno Kovah – 2014-2015
xeno@legbacore.com

All materials is licensed under a Creative
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's ‘Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

Control Flow

• Two forms of control flow
– Conditional - go somewhere if a condition is met. Think “if”s,

switches, loops
– Unconditional - go somewhere no matter what. Function calls,

goto, exceptions, interrupts.
• We’ve already seen procedure calls manifest

themselves as call/ret, let’s see how goto manifests
itself in asm.

GotoExample.c

//Goto example
#include <stdio.h>
int main(){
 goto mylabel;
 printf("skipped\n");
mylabel:
 printf("goto ftw!\n");
 return 0xf00d;
}

main:
0000000140001010 sub rsp,28h
0000000140001014 jmp 0000000140001023
0000000140001016 lea rcx,[40006000h]
000000014000101D call qword ptr [40008368h]
$mylabel:
0000000140001023 lea rcx,[40006010h]
000000014000102A call qword ptr [40008368h]
0000000140001030 mov eax,0F00Dh
0000000140001035 add rsp,28h
0000000140001039 ret

Visual Studio “RIP-relative” display errors.
Goto “RIPRelativeAddressing” slides

JMP - Jump
• Change rip to the given address

• Main forms of the address

– Short relative (1 byte displacement from end of the
instruction)

• “jmp 0000000140001023” doesn’t have the number
0000000140001023 anywhere in it, it’s really “jmp 0x0E
bytes forward”

• Some disassemblers will indicate this with a mnemonic by
writing it as “jmp short”

– Near relative (4 byte displacement from current
eip)

– Absolute (hardcoded address in instruction)

– Absolute Indirect (address calculated with r/m32)
– TODO CONFIRM R/M64

• jmp -2 == infinite loop for short relative jmp :)

13

B
oo

k
pa

ge
 9

1

GotoExample.c takeaways

//Goto example
#include <stdio.h>
int main(){
 goto mylabel;
 printf("skipped\n");
mylabel:
 printf("goto ftw!\n");
 return 0xf00d;
}

main:
0000000140001010 sub rsp,28h
0000000140001014 jmp 0000000140001023
0000000140001016 lea rcx,[40006000h]
000000014000101D call qword ptr [40008368h]
$mylabel:
0000000140001023 lea rcx,[40006010h]
000000014000102A call qword ptr [40008368h]
0000000140001030 mov eax,0F00Dh
0000000140001035 add rsp,28h
0000000140001039 ret

• goto == jmp in asm :)

IfExample.c

int main(){
 int a=1, b=2;
 if(a == b){
 return 1;
 }
 if(a > b){
 return 2;
 }
 if(a < b){
 return 3;
 }
 return 0xdefea7;
}

main:
0000000140001010 sub rsp,18h
0000000140001014 mov dword ptr [rsp+4],1
000000014000101C mov dword ptr [rsp],2
0000000140001023 mov eax,dword ptr [rsp]
0000000140001026 cmp dword ptr [rsp+4],eax
000000014000102A jne 0000000140001033
000000014000102C mov eax,1
0000000140001031 jmp 0000000140001058
0000000140001033 mov eax,dword ptr [rsp]
0000000140001036 cmp dword ptr [rsp+4],eax
000000014000103A jle 0000000140001043
000000014000103C mov eax,2
0000000140001041 jmp 0000000140001058
0000000140001043 mov eax,dword ptr [rsp]
0000000140001046 cmp dword ptr [rsp+4],eax
000000014000104A jge 0000000140001053
000000014000104C mov eax,3
0000000140001051 jmp 0000000140001058
0000000140001053 mov eax,0DEFEA7h
0000000140001058 add rsp,18h
000000014000105C ret

Jcc

Ghost of Xmas Future:
Tools you won’t get to use today

generate a Control Flow Graph (CFG)
which looks much nicer.

Not that that helps you. Just sayin’ :)

Jcc - Jump If Condition Is Met

• There are more than 4 pages of
conditional jump types! Luckily a bunch
of them are synonyms for each other.

• JNE == JNZ (Jump if not equal, Jump if
not zero, both check if the Zero Flag
(ZF) == 0)

14

B
oo

k
pa

ge
 9

3

Some Notable Jcc Instructions

• JZ/JE: if ZF == 1

• JNZ/JNE: if ZF == 0

• JLE/JNG : if ZF == 1 or SF != OF

• JGE/JNL : if SF == OF
• JBE/JNA: if CF == 1 OR ZF == 1

• JB: if CF == 1

• Note: Don’t get hung up on memorizing which flags
are set for what. More often than not, you will be
running code in a debugger, not just reading it. In the
debugger you can just look at rflags and/or watch
whether it takes a jump.

Some Notable Jcc Instructions

• Mnemonic translations
• A = above, unsigned notion
• B = below, unsigned notion
• G = greater than, signed notion
• L = less than, signed notion
• E = Equal (same a Z, zero flag set)
• N = Not (like “Not less than:” JNL)

Some Notable Jcc Instructions

• Mnemonic translations
• B = below, unsigned notion
• A = above, unsigned notion
• N = Not (like “Not less than:” JNL)
• G = greater than, signed notion
• L = less than, signed notion
• E = Equal (same a Z, zero flag set)

Final Fantasy 7
Crystal Bangle
Unlocked!

Flag setting

• Before you can do a conditional jump,
you need something to set the condition
flags for you.

• Typically done with CMP, TEST, or
whatever instructions are already inline
and happen to have flag-setting side-
effects

CMP - Compare Two Operands

• “The comparison is performed by subtracting the second
operand from the first operand and then setting the
status flags in the same manner as the SUB instruction.”

• What’s the difference from just doing SUB? Difference
is that with SUB the result has to be stored
somewhere. With CMP the result is computed, the
flags are set, but the result is discarded. Thus this
only sets flags and doesn’t mess up any of your
registers.

• Modifies CF, OF, SF, ZF, AF, and PF

• (as we already saw, SUB modifies all those too)

15

B
oo

k
pa

ge
 9

3

IfExample.c takeaways

int main(){
 int a=1, b=2;
 if(a == b){
 return 1;
 }
 if(a > b){
 return 2;
 }
 if(a < b){
 return 3;
 }
 return 0xdefea7;
}

main:
0000000140001010 sub rsp,18h
0000000140001014 mov dword ptr [rsp+4],1
000000014000101C mov dword ptr [rsp],2
0000000140001023 mov eax,dword ptr [rsp]
0000000140001026 cmp dword ptr [rsp+4],eax
000000014000102A jne 0000000140001033
000000014000102C mov eax,1
0000000140001031 jmp 0000000140001058
0000000140001033 mov eax,dword ptr [rsp]
0000000140001036 cmp dword ptr [rsp+4],eax
000000014000103A jle 0000000140001043
000000014000103C mov eax,2
0000000140001041 jmp 0000000140001058
0000000140001043 mov eax,dword ptr [rsp]
0000000140001046 cmp dword ptr [rsp+4],eax
000000014000104A jge 0000000140001053
000000014000104C mov eax,3
0000000140001051 jmp 0000000140001058
0000000140001053 mov eax,0DEFEA7h
0000000140001058 add rsp,18h
000000014000105C ret

• Conditional logic, like if statements, manifests in assembly as
conditional jumps (Jcc). “If condition true, jump there, else fall
through”

• Conditions involving in/equality are often checked with a CMP
instruction, which is the same thing as a SUB, but it just throws the
results away after the relevant RFLAGS bits are set

• The RFLAGS bits are fundamentally what are checked by the Jccs

BitmaskExample.c

#define MASK 0x100

int main(){
 int a=0x1301;
 if(a & MASK){
 return 1;
 }
 else{
 return 2;
 }
}

main:
0000000140001010 sub rsp,18h
0000000140001014 mov dword ptr [rsp],1301h
000000014000101B mov eax,dword ptr [rsp]
000000014000101E and eax,100h
0000000140001023 test eax,eax
0000000140001025 je 0000000140001030
0000000140001027 mov eax,1
000000014000102C jmp 0000000140001035
000000014000102E jmp 0000000140001035
0000000140001030 mov eax,2
0000000140001035 add rsp,18h
0000000140001039 ret

TEST - Logical Compare

• “Computes the bit-wise AND of
first operand (source 1 operand)
and the second operand (source 2
operand) and sets the SF, ZF, and
PF status flags according to the
result.”

• Like CMP - sets flags, and throws
away the result

16

BitmaskExample.c takeaways

#define MASK 0x100

int main(){
 int a=0x1301;
 if(a & MASK){
 return 1;
 }
 else{
 return 2;
 }
}

main:
0000000140001010 sub rsp,18h
0000000140001014 mov dword ptr [rsp],1301h
000000014000101B mov eax,dword ptr [rsp]
000000014000101E and eax,100h
0000000140001023 test eax,eax
0000000140001025 je 0000000140001030
0000000140001027 mov eax,1
000000014000102C jmp 0000000140001035
000000014000102E jmp 0000000140001035
0000000140001030 mov eax,2
0000000140001035 add rsp,18h
0000000140001039 ret

• Conditions depending on bit tests (which is often expressed with
boolean logic instructions) will often see the RFLAGS set with the
CMP instruction. CMP is like AND, but throws the results away

• The reason for the extraneous jmp here is because it’s unoptimized
code so it’s following a simpler set of asm construction rules

Instructions we now know (17)
• NOP
• PUSH/POP
• CALL/RET
• MOV
• ADD/SUB
• IMUL
• MOVZX/MOVSX
• LEA
• JMP/Jcc (family)
• CMP/TEST

