
Introduction to Intel x86-64
Assembly, Architecture,

Applications, & Alliteration

Xeno Kovah – 2014-2015
xeno@legbacore.com

All materials is licensed under a Creative
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's ‘Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

Example9.c 
Journey to the center of memcpy()

//Journey to the center of memcpy
#include <stdio.h>

typedef struct mystruct{
 int var1;
 char var2[4];
} mystruct_t;

int main(){
 mystruct_t a, b;
 a.var1 = 0xFF;
 memcpy(&b, &a, sizeof(mystruct_t));
 return 0xAce0Ba5e;
}

main:
 sub rsp,38h
 mov dword ptr [a],0FFh
 mov r8d,8
 lea rdx,[a]
 lea rcx,[b]
 call memcpy (0140001046h)
 mov eax,0ACE0BA5Eh
 add rsp,38h
 ret

memcpy:
 mov r11,rcx ; rcx == &b
 mov r10,rdx ; rdx == &a
 cmp r8,10h ; r8 == sizeof(mystruct_t) == 8
 jbe mcpy00aa+95h (07FEEB9DA349h)
;It will take the jump because 0x8 is below or equal (JBE) 0x10
MoveBytes16:
 mov r10,r11 ; doesn’t need to keep rdx copy anymore
MoveBytes16a:
 lea r9,[__mbctype_initialized (07FEEBC10000h)]
 mov rax,r8
 mov eax,dword ptr [r9+r8*4+4A363h]
 add rax,r9 ; the 4 preceding instructions are just
calculating based on the size (r8) and some lookup table,
where to jump next to continue
 jmp rax

It begins…

MoveSmall8: ; oh, well that’s a convenient name…
 mov rax,qword ptr [rdx]
 mov qword ptr [r10],rax ; bam, 8 byte copy and done!
 mov rax,r11
 ret ;done already? But I just got here!

;So that was all fairly un-interesting…And we didn’t find any new
instructions. So let’s go back and change the size of our struct
so that we don’t take that initial JBE and see what happens on
the other path…

typedef struct mystruct{
 int var1;
 char var2[4];
} mystruct_t;

typedef struct mystruct{
 int var1;
 char var2[16];
} mystruct_t;

memcpy:
 mov r11,rcx ; rcx == &b == destination
 mov r10,rdx ; rdx == &a == source
 cmp r8,10h ; r8 == sizeof(mystruct_t) == 0x14
 jbe mcpy00aa+95h (07FEEB9DA349h)
;This time it will NOT take the jump because 0x14 is not below or
equal (JBE) 0x10. So it falls through to…
 sub rdx,rcx
 jae mcpy00aa (07FEEDE0A2B4h) ; if the copy destination
is above (unsigned) compare or equal to the source, then we can
skip the next check. In our case it happens to not be
 mov rax,r10 ; copy the start address of the src
 add rax,r8 ; calculate the last byte of the src to be copied
 cmp rcx,rax ; check if the dst’s start address is less than
the last byte of the src (meaning they overlap)
 jl MoveSmall+297h (07FEEDE0A5FAh)
mcpy00aa:

It re-begins…

mcpy00aa:
 bt dword ptr [__favor (07FEEDF93408h)],1 ; check some bit
that we have no idea what it is (but probably a configuration bit)
 jae mcpy00aa+1Dh (07FEEDE0A2D1h) ; if it’s set, jmp
; in our case it seems not to be set, so we fall through
 push rdi ; save rdi (because it’s going to be used)
 push rsi ; save rsi
 mov rdi,rcx ; move dst into rdi
 mov rsi,r10 ; move src into rsi
 mov rcx,r8 ; move size into dcx
 rep movs byte ptr [rdi],byte ptr [rsi] ; that which we seek!
 pop rsi ; restore
 pop rdi ; restore
 mov rax,r11 ; set return value to the copy of dst
 ret

So, what’s the deal
with “rep movs”?

http://blog.kevineikenberry.com/wp-content/uploads/2013/10/seinfeld_jerry.jpg

REP MOVS
Repeat Move Data String to String

• MOVS is one of number of instructions that can have the “rep”
prefix added to it, which repeat a single instruction multiple times.

• All rep operations use *cx register as a “counter” to determine how
many times to loop through the instruction. Each time it executes, it
decrements *cx. Once *cx == 0, it continues to the next instruction.

• Either stores 1, 2, 4, or 8 bytes at a time
• Either fill 1 byte at [di] with [si] or fill 2/4/8 bytes at [*di] with [*si].
• Moves the *di register forward 1/2/4/8 bytes at a time, so that the

repeated store operation is storing into consecutive locations.
• So there are 3 pieces which must happen before the actual rep stos

occurs: set *di to the starting destination, *si to the starting source,
and *cx to the number of times to store

• Note: Unlike MOV, MOVS can move memory to memory…but only
between [*si] and [*di]

• A lot of people don’t pay attention to the fact that it’s REP MOVS,
not REP MOV (even though you may say it like “rep move”)

23

B
oo

k
pa

ge
 1

01
-1

02

High level pseudo-code approximation
(how interesting…it’s like I went in reverse of the normal software engineering process…)

memcpy(void * dst, void * src, unsigned int len){
 if(len <= 0x10){
 //sequence of individual mov instructions
 //as appropriate for the size to be copied
 }
 else{
 if(src < dst){ //check for potential overlap…
 if(dst < src+len) //uh oh, they definitely overlap
 //Path we didn’t take @ 07FEEDE0A5FAh
 }
 if(07FEEDF93408h & 2){
 //Don’t know what’s up with this. Some configuration bit most likely
 }
 else{
 //Use byte-wise REP MOVS as generic memcpy
 }
…
}

Instructions we now know (30)
• NOP
• PUSH/POP
• CALL/RET
• MOV
• ADD/SUB
• IMUL
• MOVZX/MOVSX
• LEA
• JMP/Jcc (family)
• CMP/TEST
• AND/OR/XOR/NOT
• INC/DEC
• SHR/SHL/SAR/SAL
• DIV/IDIV
• REP STOS
• REP MOVS

