
Introduction to Intel x86-64
Assembly, Architecture, Applications,

& Alliteration

aka

Understanding x86-64 Assembly for
Reverse Engineering & Exploits

Xeno Kovah – 2014-2015
xeno@legbacore.com

All materials is licensed under a Creative
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's ‘Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

Special Thanks To:

• Veronica Kovah & Sam Cornwell, for
helping with the update for 64 bit!

Additional Content/Ideas/Info
Provided By:

• Jon A. Erickson, Christian Arllen, Dave
Keppler, Dillon Beresford

• Who suggested what, is inline with the
material

• Your name here! Just suggest/contribute
some content that ultimately makes its
way into the class

Why learn x86 assembly?

http://securityreactions.tumblr.com/post/97147746722/the-first-time-you-see-assembly-language

The first time you see assembly language

http://securityreactions.tumblr.com/post/97147746722/the-first-time-you-see-assembly-language

Why learn x86 assembly?

http://securityreactions.tumblr.com/post/97147718552/what-its-like-when-you-finally-understand-assembly

What it’s like when you finally understand assembly

http://securityreactions.tumblr.com/post/97147718552/what-its-like-when-you-finally-understand-assembly

Why learn x86 assembly?
• Because x86 is pervasive on PCs & servers (and you better

believe that Intel is going to claw their way on to mobile ;))
• Because it’s basically a given that some talk at a security

conference will at some point flash some x86 assembly in order
to explain what’s going on. But even more talks just assume you
know it and will be able to fill in the implied asm next steps.

• Because it’s essential to writing memory corrupting exploits on
PCs & servers

• Because it’s essential to reverse engineering programs
(goodware or malware) on PCs & servers

• Because there are plenty of people who know network security
but those who know host-based security are more rare and
therefore more valuable

• Because all the other architectures are super simple by
comparison and easier to learn afterwards

• Because a lot of the top hackers who have come before you
knew x86 assembly, and in order to get to where they got, you
need to know what they knew

8

Defeating Signed BIOS Enforcement - Kallenberg et al., HITB 2013

9Digging for Sandbox Escapes - Forshaw, BlackHat USA 2014

10

Full System Emulation: Achieving Successful Automated Dynamic
Analysis of Evasive Malware, Kruegel, BlackHat USA 2014

11Exposing Bootkits with BIOS Emulation - Haukli, BlackHat USA 2014

Governments as Malware Authors - Hypponen, BlackHat USA 2014

About Me

• Security nerd – T-Shaped!1

• Started LegbaCore in January 2015
• Realmz ~1996, Mac OS 8, BEQ->BNE FTW!
• x86 ~2002
• Know or have known ~5 assembly

languages(x86, SPARC, ARM, PPC,
68HC12). x86 is by far the most complex.

• Routinely read assembly when debugging my
own code, reading exploit code, and reverse
engineering things

• 1http://www.valvesoftware.com/company/Valve_Handbook_LowRes.pdf

5 min

About You?
• What is your name?

!(What!do!you!want/hope!!
to!get!out!of!the!class?)!

• Where do you work?
• What is your job?
• Do you know which environment you will be

using this knowledge in?

(What are you looking
to get out of the class?)

10 min

About the Class

• The intent of this class is to expose you to the most
commonly generated assembly instructions, and the
most frequently dealt with architecture hardware.
– 64 bit instructions/hardware
– Implementation of a Stack
– Common tools

• Many things will therefore be left out or deferred to
later classes.
– Floating point instructions/hardware
– 16 bit instructions/hardware
– Complicated or rare instructions
– Instruction pipeline, caching hierarchy, alternate modes of

operation, hw virtualization, etc (see other classes for those)

2 min

About the Class 2

• The hope is that the material covered will be provide
the required background to delve deeper into areas
which may have seemed daunting previously.

• Because I can’t anticipate the needs of all job classes,
if there are specific areas which you think would be
useful to certain job types, let me know. The focus
areas are currently primarily influenced by my security
background, but I would like to make the class as
widely applicable as possible.

When you’re “done” with this class…
you’re not done.

You’ve just begun.
• I want peers, not peons
• I want people who can do what I can do, and

ultimately exceed me
• I need people who are better than me to compete

against, in order to get better myself
• Therefore I’m trying to teach as many people what I

know as possible
• To this end I started OpenSecurityTraining.info
• And I highly recommend you continue your education

there once this class is done

Intermediate*x86*
2*day,*Xeno*Kovah*

Intro*x86*
2*day,*Xeno*Kovah*

Life*of*Binaries*
2*day,*Xeno*Kovah*

Stealth*Malware*
2*day,*Xeno*Kovah*

Reverse*Engineering*
2*day,*MaA*Briggs*

Malware**

StaBc*Analysis*
2*day,*MaA*Briggs,*Frank*Poz*

Required*

Recommended*

Approved*

Wanted*

r0x0r*Skill*Tree*
"Malware*analysis"*

Memory*Analysis*
2*day,*TBD*

Malicious*Document*

Analysis:*Office*&*PDF*
2*day,*TBD*

Malicious*Web*

Analysis:*Flash*&*

Javascript*

Malware*Dynamic*

Analysis*
3*day,*Veronica*Kovah*

The*Adventures*of*

a*Keystroke*
2*day,*Emre*Tinaztepe*

Others*
tbd*

YOUAREHERE$

Intermediate*x86*
2*day,*Xeno*Kovah*

Advanced*x86:*
Virtualiza=on*
2*day,*David*Weinstein*

Intro*x86*
2*day,*Xeno*Kovah*

Life*of*Binaries*
2*day,*Xeno*Kovah*

Stealth*Malware*
2*day,*Xeno*Kovah*

Required*

Recommended*

Approved*

Wanted*

r0x0r*Skill*Tree*
"Deep*system*security*&*trusted*compu=ng"*

Advanced*x86:*
Real*Mode*(BIOS)*&*

(SMM)*System*
Management*Mode*

2*day,*John*BuTerworth*

Intro*Trusted*
Compu=ng*
2*day,*Ariel*Segall*

Advanced*x86:*
Trusted*Execu=on*Technology*(TXT)*

2*day,*Xeno*Kovah*

Intel*SGX*
2*day*

YOUAREHERE$

Intro&x86&
2&day,&Xeno&Kovah&

Vulnerabili9es&&&
Exploits&1&

2&day,&Corey&Kallenberg&

Required&

Recommended&

Approved&

Wanted&

Exploits&2&
2&day,&Corey&Kallenberg&

Exploits&3&
2&day,&Corey&Kallenberg&

r0x0r&Skill&Tree&
"Exploits"&

Reverse&Engineering&
2&day,&MaN&Briggs&

Others&
TBD&

YOUAREHERE$

Agenda

• Day 1 - Part 1 - Architecture
Introduction, Windows tools

• Day 1 - Part 2 - Windows Tools &
Analysis, Learning New Instructions

• Day 2 - Part 1 - Linux Tools & Analysis
• Day 2 - Part 2 - Inline Assembly, Read

The Fun Manual, Choose Your Own
Adventure

2 min

Book (64 bit)
• “Introduction to 64 Bit Assembly

Programming for Linux and OS
X: Third Edition” by Ray Seyfarth

• Optional book for the class, to
give you alternative explanations
to my own

• When you see “Book” page
references in the bottom of
slides, it is referring to this book.

2 min

http://www.amazon.com/gp/product/1484921909/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1484921909&linkCode=as2&tag=opensecuinfo-20&linkId=EPDXM3AQYTVSJEET

Book (32 bit)
• “Professional Assembly

Language” by Richard Blum.
• This optional book was originally

picked after the creation of the
32 bit class because it uses
AT&T assembly syntax & linux as
an example, in contrast to the
majority of my class which is Intel
syntax & Windows

• Therefore it just serves as an
alternative source of explanation
in case something from the class
isn’t clear and you want a second
opinion

2 min

http://www.amazon.com/gp/product/0764579010/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0764579010&linkCode=as2&tag=opensecuinfo-20&linkId=KQJSOUENS4OK5JZG

Miss Alaineous

• Questions: Ask ‘em if you got ‘em
– If you fall behind and get lost and try to tough it out until you

understand, it’s more likely that you will stay lost, so ask
questions ASAP.

• Browsing the web and/or checking email during class
is a good way to get lost

• 2 hours, 10 min break, 1.5 hours, lunch, 1 hour/5 min
break after that

• It’s called x86 because of the progression of Intel
chips from 8086, 80186, 80286, etc. I just had to get
that out of the way. :)

Miss Alaineous 2

• Intel originally wanted to break from x86 when moving
to 64 bit. This was Itanium aka IA64 (Intel Architecture
64 bit). However, AMD decided to extend x86 to 64
bits itself, leading to the AMD64 architecture. When
Itanium had very slow adoption, Intel decided to bite
the bullet and license the 64 bit extensions from AMD.

• In the Intel manuals you will see the 64 bit extensions
referred to as IA32e or EMT64 or Intel 64 (but never
IA64. Again, that's Itanium, a completely different
architecture).

• You might sometimes see it called amd64 or x64 by
MS or some linux distributions

• In this class we're going to go with x86-64

What you’re going to learn:

#include <stdio.h>
int main(){

printf(“Hello World!\n”);
return 0x1234;

}

Is the same as…
main:

000000013F511000 sub rsp,28h

000000013F511004 lea rcx,[__globallocalestatus-10h (13F513000h)]

000000013F51100B call qword ptr [__imp_printf (13F512100h)]

000000013F511011 mov eax,1234h

000000013F511016 add rsp,28h

000000013F51101A ret

Windows Visual C++ 2012 Express
/GS (buffer overflow protection) option turned off

Disassembled with Visual C++

which could be viewed as…
0000000140001000 <.text>:
 140001000: 48 83 ec 28 sub $0x28,%rsp
 140001004: 48 8d 0d ad 11 00 00 lea 0x11ad(%rip),%rcx # 0x1400021b8
 14000100b: ff 15 07 11 00 00 callq *0x1107(%rip) # 0x140002118
 140001011: b8 34 12 00 00 mov $0x1234,%eax
 140001016: 48 83 c4 28 add $0x28,%rsp
 14000101a: c3 retq

Windows Visual C++ 2012 Express
/GS (buffer overflow protection) option turned off

Disassembled with objdump -d from cygwin

08048374 <main>:
 8048374: 8d 4c 24 04 lea 0x4(%rsp),%rcx
 8048378: 83 e4 f0 and $0xfffffff0,%rsp
 804837b: ff 71 fc pushl -0x4(%rcx)
 804837e: 55 push %rbp
 804837f: 89 e5 mov %rsp,%rbp
 8048381: 51 push %rcx
 8048382: 83 ec 04 sub $0x4,%rsp
 8048385: c7 04 24 60 84 04 08 movl $0x8048460,(%rsp)
 804838c: e8 43 ff ff ff call 80482d4 <puts@plt>
 8048391: b8 2a 00 00 00 mov $0x1234,%eax
 8048396: 83 c4 04 add $0x4,%rsp
 8048399: 59 pop %rcx
 804839a: 5d pop %rbp
 804839b: 8d 61 fc lea -0x4(%rcx),%rsp
 804839e: c3 ret
 804839f: 90 nop

which is equivalent to…

Ubuntu 12.04, GCC 4.2.4
Disassembled with “objdump -d”

which is equivalent to…
_main:
0000000100000f40 pushq %rbp
0000000100000f41 movq %rsp, %rbp
0000000100000f44 subq $0x10, %rsp
0000000100000f48 leaq 0x3f(%rip), %rdi ## literal pool for:

"Hello World!"
0000000100000f4f movl $0x0, -0x4(%rbp)
0000000100000f56 movb $0x0, %al
0000000100000f58 callq 0x100000f6e ## symbol stub for: _printf
0000000100000f5d movl $0x1234, %ecx
0000000100000f62 movl %eax, -0x8(%rbp)
0000000100000f65 movl %ecx, %eax
0000000100000f67 addq $0x10, %rsp
0000000100000f6b popq %rbp
0000000100000f6c ret

Mac OS 10.9.4, Apple LLVM version 5.1 (clang-503.0.40)
Disassembled from command line with “otool -tV”

But it all boils down to…
.text:0000000140001000 main
.text:0000000140001000
.text:0000000140001000 sub rsp, 28h
.text:0000000140001004 lea rcx, Format ; "Hello World!\n"
.text:000000014000100B call cs:__imp_printf
.text:0000000140001011 mov eax, 1234h
.text:0000000140001016 add rsp, 28h
.text:000000014000101A retn

Windows Visual C++ 2012, /GS (buffer overflow protection) option turned off
Optimize for minimum size (/O1) turned on

Disassembled with IDA Pro 6.6 (with some omissions for fitting on screen)

Take Heart!

• By one measure, only 14 assembly
instructions account for 90% of code!

– http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Bilar.pdf

• I think that knowing about 20-30 (not counting
variations) is good enough that you will have
the check the manual very infrequently

• You’ve already seen 10 instructions, just in the
hello world variations!

