Introduction to Intel x86-64
Assembly, Architecture,
Applications, & Alliteration

Xeno Kovah — 2014-2015
xeno@legbacore.com

All materials is licensed under a Creative
Commons “Share Alike” license.

 http://creativecommons.org/licenses/by-sa/3.0/

You are free:

10 Share — 10 copy, dis¥ribuie and transma the work
10 Remix — to adapt the work

Under the following conditions:

Attnbution — You must attnbute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

yOour use of the work

Share Alike — If you aher, transform, or build upon this work, you ma
disinbule the resulbng work only under the same, Similar or 3 compalible

license

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work

"Is derived from Xeno Kovah's ‘Intro x86-64" class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

MulDivExample.c

int main(){ main:
unsigned inta = 1’ 0000000140001010 sub rsp,18h
a=a*o; 0000000140001014 mov dword ptr [rsp],1
a=al 3.’ 000000014000101B mov eax,dword ptr [rsp]

_ 000000014000101E imul eax,eax,6

return Ox2bad; 0000000140001021 mov dword ptr [rsp],eax
} 0000000140001024 xor edx,edx
0000000140001026 mov eax,dword ptr [rsp]
0000000140001029 mov ecx,3
000000014000102E div eax,ecx
0000000140001030 mov dword ptr [rsp],eax
0000000140001033 mov eax,2BADh
0000000140001038 add rsp,18h
000000014000103C ret

We already saw that when a C operand is a power of 2, it uses shifts instead of multiplies/divides, but this shows that in other cases, it uses multiply or divide instructions.

s

. g ax r/m8(cx) edx Jeax |r/mX(ecx)
initial
0x8 |0x3 0x0 J0x8]J0x5
operation div ax, cx div eax, ecx
@ ah al edx [eax [r/mX(ecx)
result ox2 |ox2 0x3 |ox1 [ox5

DIV - Unsigned Divide

Three forms
— Unsigned divide ax by r/m8, al = quotient, ah = remainder
— Unsigned divide edx:eax by r/m32, eax = quotient, edx = remainder
— Unsigned divide rdx:rax by r/m64, rax = quotient, rdx = remainder
If dividend is 32/64bits, edx/rdx will just be set to 0 by the

compiler before the instruction (as occurred in the
MulDivExample.c code)

If the divisor is 0, a divide by zero exception is raised.

Book page 69

Note that there’s no form which takes an immediate.

IDIV - Signed Divide

* If you were to then change MulDivExample to signed,
you would see the IDIV instruction appear
* Three forms
— Signed divide ax by r/m8, al = quotient, ah = remainder
— Signed divide edx:eax by r/mX, eax = quotient, edx = remainder
— Signed divide rdx:rax by r/m64, rax = quotient, rdx = remainder

« If dividend is 32/64bits, edx/rdx will just be set to 0 by the
compiler before the instruction

 If the divisor is 0, a divide by zero exception is raised.

. g ax r/m8(cx) edx Jeax |r/mX(ecx)
initial
OxFE | 0x2 0x0 JO0x8]J0x3
operation div ax, cx div eax, ecx
@ ah al edx [eax [r/mX(ecx)
result 0x0 |OxFF ox1 [ox2 [ox3

Book page 69

Note that there’s no form which takes an immediate.

MulDivExample.c takeaways

« When a multiply or divide is not by a power of 2, compilers will use
normal multiply/divide instructions

* VS compiler prefers IMUL over MUL (unsigned multiply) for simple
multiplies, due to its option to use 3 parameters

int main()}{ main:
unsigned inta = 1; 0000000140001010 sub rsp,18h
a=a*6 0000000140001014 mov dword ptr [rsp],1
a=a/ 3_’ 000000014000101B mov eax,dword ptr [rsp]
’) 000000014000101E imul eax,eax,b
return Ox2bad; 0000000140001021 mov dword ptr [rsp],eax
} 0000000140001024 xor edx,edx

0000000140001026 mov eax,dword ptr [rsp]
0000000140001029 mov ecx,3
000000014000102E div eax,ecx
0000000140001030 mov dword ptr [rsp],eax
0000000140001033 mov eax,2BADh
0000000140001038 add rsp,18h
000000014000103C ret

We already saw that when a C operand is a power of 2, it uses shifts instead of multiplies/divides, but this shows that in other cases, it uses multiply or divide instructions.

Instructions we now know (28)

« NOP

« PUSH/POP

« CALL/RET

« MOV

« ADD/SUB

« IMUL

« MOVZX/MOVSX

« LEA

+ JMP/Jcc (family)

« CMP/TEST
 AND/OR/XOR/NOT
 INC/DEC

« SHR/SHL/SAR/SAL
« DIV/IDIV

