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MulDivExample.c

int main(){ main:
unsigned inta = 1’ 0000000140001010 sub rsp,18h
a=a*o; 0000000140001014 mov dword ptr [rsp],1
a=al 3.’ 000000014000101B mov eax,dword ptr [rsp]

_ 000000014000101E imul eax,eax,6

return Ox2bad; 0000000140001021 mov  dword ptr [rsp],eax
} 0000000140001024 xor edx,edx
0000000140001026 mov eax,dword ptr [rsp]
0000000140001029 mov ecx,3
000000014000102E div eax,ecx
0000000140001030 mov dword ptr [rsp],eax
0000000140001033 mov eax,2BADh
0000000140001038 add rsp,18h
000000014000103C ret

We already saw that when a C operand is a power of 2, it uses shifts instead of multiplies/divides, but this shows that in other cases, it uses multiply or divide instructions.



s

. g ax r/m8(cx) edx Jeax |r/mX(ecx)
initial
0x8 |0x3 0x0 J0x8 ]J0x5
operation div ax, cx div eax, ecx
@ ah al edx [eax [r/mX(ecx)
result ox2 |ox2 0x3 |ox1 [ox5

DIV - Unsigned Divide

Three forms
— Unsigned divide ax by r/m8, al = quotient, ah = remainder
— Unsigned divide edx:eax by r/m32, eax = quotient, edx = remainder
— Unsigned divide rdx:rax by r/m64, rax = quotient, rdx = remainder
If dividend is 32/64bits, edx/rdx will just be set to 0 by the

compiler before the instruction (as occurred in the
MulDivExample.c code)

If the divisor is 0, a divide by zero exception is raised.

Book page 69

Note that there’s no form which takes an immediate.




IDIV - Signed Divide

* If you were to then change MulDivExample to signed,
you would see the IDIV instruction appear
* Three forms
— Signed divide ax by r/m8, al = quotient, ah = remainder
— Signed divide edx:eax by r/mX, eax = quotient, edx = remainder
— Signed divide rdx:rax by r/m64, rax = quotient, rdx = remainder

« If dividend is 32/64bits, edx/rdx will just be set to 0 by the
compiler before the instruction

 If the divisor is 0, a divide by zero exception is raised.

. g ax r/m8(cx) edx Jeax |r/mX(ecx)
initial
OxFE | 0x2 0x0 JO0x8 ]J0x3
operation div ax, cx div eax, ecx
@ ah al edx [eax [r/mX(ecx)
result 0x0 |OxFF ox1 [ox2 [ox3

Book page 69

Note that there’s no form which takes an immediate.




MulDivExample.c takeaways

« When a multiply or divide is not by a power of 2, compilers will use
normal multiply/divide instructions

* VS compiler prefers IMUL over MUL (unsigned multiply) for simple
multiplies, due to its option to use 3 parameters

int main()}{ main:
unsigned inta = 1; 0000000140001010 sub rsp,18h
a=a*6 0000000140001014 mov dword ptr [rsp],1
a=a/ 3_’ 000000014000101B mov eax,dword ptr [rsp]
’ ) 000000014000101E imul eax,eax,b
return Ox2bad; 0000000140001021 mov  dword ptr [rsp],eax
} 0000000140001024 xor edx,edx

0000000140001026 mov eax,dword ptr [rsp]
0000000140001029 mov ecx,3
000000014000102E div eax,ecx
0000000140001030 mov dword ptr [rsp],eax
0000000140001033 mov eax,2BADh
0000000140001038 add rsp,18h
000000014000103C ret

We already saw that when a C operand is a power of 2, it uses shifts instead of multiplies/divides, but this shows that in other cases, it uses multiply or divide instructions.



Instructions we now know (28)

« NOP

« PUSH/POP

« CALL/RET

« MOV

« ADD/SUB

« IMUL

« MOVZX/MOVSX

« LEA

+ JMP/Jcc (family)

« CMP/TEST
 AND/OR/XOR/NOT
 INC/DEC

« SHR/SHL/SAR/SAL
« DIV/IDIV




