
Xeno Kovah – 2014-2015
xeno@legbacore.com

Introduction to Intel x86-64
Assembly, Architecture,

Applications, & Alliteration

All materials is licensed under a Creative
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's ‘Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

Intel vs. AT&T Syntax
• Intel: Destination <- Source(s)

– Windows. Think algebra or C: y = 2x + 1;
– mov rbp, rsp
– add rsp, 0x14 ; (rsp = rsp + 0x14)

• AT&T: Source(s) -> Destination
– *nix/GNU. Think elementary school: 1 + 2 = 3
– mov %rsp, %rbp
– add $0x14,%rsp
– So registers get a % prefix and immediates get a $

• My classes will use Intel syntax except in this section
• But it’s important to know both, so you can read documents in

either format.

Intel vs AT&T Syntax 2

• For instructions which can operate on different sizes,
the mnemonic will have an indicator of the size.
– movb - operates on bytes
– movw - operates on word (2 bytes)
– movl - operates on “long” (dword) (4 bytes)
– mov/movq - operates on “quad word” (qword) (8

bytes)
• Intel indicates size with things like “mov dword ptr [rax],

but it’s not in the actual mnemonic of the instruction
• Will occasionally see things like “movzwl” which is

move with zero extend from a word to a long

Intel vs AT&T Syntax 3
• In my opinion the hardest-to-read difference is for r/m32 values
• For intel it’s expressed as

[base + index*scale + disp]

• For AT&T it’s expressed as
disp(base, index, scale)

• Examples:
– call QWORD PTR [rbx+rsi*4-0xe8]
– callq *-0xe8(%rbx,%rsi,4)

– mov rax, QWORD PTR [rbp+0x8]
– movq 0x8(%rbp), %rax

– lea rax, [rbx-0xe8]
– leaq -0xe8(%rbx), %rax

And some versions of the gnu tools, instead of using like “mov -0x4(%rbp)” will show it as “mov 0xFFFFFFFC(%rbp)” Some more links talking about the differences http://www.w00w00.org/files/articles/att-vs-intel.txt <- haxors ;) http://en.wikipedia.org/wiki/X86_assembly_language http://sig9.com/articles/att-syntax

TODO

• Create a game that shows two instructions in AT&T
syntax and Intel syntax, and asks the students
whether they’re the same or not

• (The +100/-200 helps mitigate advantage of guessing)

