Introduction to Intel x86-64
Assembly, Architecture, Applications,
& Alliteration

aka

Understanding x86-64 Assembly for
Reverse Engineering & Exploits

Xeno Kovah — 2014-2015
xeno@legbacore.com

All materials is licensed under a Creative
Commons “Share Alike” license.

 http://creativecommons.org/licenses/by-sa/3.0/

You are free:

10 Share — 10 copy, dis¥ribuie and transma the work
10 Remix — to adapt the work

Under the following conditions:

Attnbution — You must attnbute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

yOour use of the work

Share Alike — If you aher, transform, or build upon this work, you ma
disinbule the resulbng work only under the same, Similar or 3 compalible

license

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work

"Is derived from Xeno Kovah's ‘Intro x86-64" class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

Special Thanks To:

* Veronica Kovah & Sam Cornwell, for
helping with the update for 64 bit!

Additional Content/Ideas/Info
Provided By:

« Jon A. Erickson, Christian Arllen, Dave
Keppler, Dillon Beresford

* Who suggested what, is inline with the
material

* Your name here! Just suggest/contribute
some content that ultimately makes its
way into the class

Why learn x86 assembly?

The first time you see assembly language

http://securityreactions.tumblr.com/post/97147746722/the-first-time-you-see-assembly-language

Why learn x86 assembly?

What it’s like when you finally understand assembly

http://securityreactions.tumblr.com/post/97147718552/what-its-like-when-you-finally-understand-assembly

Why learn x86 assembly?

Because x86 is pervasive on PCs & servers (and you better
believe that Intel is going to claw their way on to mobile ;))

Because it’s basically a given that some talk at a security
conference will at some point flash some x86 assembly in order
to explain what’s going on. But even more talks just assume you
know it and will be able to fill in the implied asm next steps.

Because it's essential to writing memory corrupting exploits on
PCs & servers

Because it's essential to reverse engineering programs
(goodware or malware) on PCs & servers

Because there are plenty of people who know network security
but those who know host-based security are more rare and
therefore more valuable

Because all the other architectures are super simple by
comparison and easier to learn afterwards

Because a lot of the top hackers who have come before you
knew x86 assembly, and in order to get to where they got, you
need to know what they knew

Defeating Signed BIOS Enforcement - Kallenberg et al., HITB 2013
Packet Parsing

mo
mo
mo
mo
mo
mo
mo
mo
sN
mo
mo

J

oV R :..‘._‘1‘__'.-‘ JsMdre

= SMM first locates the RBU packet by scanning for an ASCII
signature upon page aligned boundaries.

* Once located, members of the RBU packet are stored in an SMM
data area for use in later calculations...

MITRE

2] context

BrokerCreateKnownObject

- -
Iatx AEACALE CHUM A I S r B | ct [S eher Creat slneenit Jec L {CRUMmr v aner it joct o SLa0ws Thils, comat sbtrect SUIF &, comatl strect _ORIR &, strect F0ahnews
THY Wty O 0 1 RntwnBh | £ THE LR Butr Br ahnr O | #< DIURL ST _CF | DN AT Db newalBl gv o oo o
[P~
il drd -
LA dwmrd phr
s Swrd ptr -
e - .
1 e O ‘ o~
1T oM O . o
Ed - e
L adad -~
- . ™
K oald LAl H e -
ol ", (egercinie]
Kol “~u, i e O ey Wy
et e P Vet _oeas
- e, sl
— N, eaT e
eald Tistgw
test - van
) 13 Lol

Digging for Sandbox Escapes - Forshaw, BlackHat USA 2014

Full System Emulation: Achieving Successful Automated Dynamic
Analysis of Evasive Malware, Kruegel, BlackHat USA 2014

VM Approach versus CPU Emulation

cwpl
Je
xorl

: xorl
i sysbol stub for: _cpen ! callqg
' sovl
test!
Js
leoq

collqg 100079478

sovi

- movl
collq @xiP0d70404 ; sysbol stub for: _reod callq

sovi
- wovl
; sysbol stub for: _close callg
- cspl
jle

collqg xiPod7eCns

™ lastiine —

$8cbic Nebix

Sx10009f 21e

Nesi Nest

aiS rdi

xbax,iea-

100070478 3 sysbol stub for: _cpen
Xoax Nri2a

Noax Nedax

2100001 Z1e

SxfrrrrrM(Ntp) Mrcx

Nrex Axf 1 fecd(Xrtp)

$DDDDNED , Nadx

Nrex Nrst

Neax Nedy

100070404 : symbol stub for: _reod
Nrox il

Neax Nridad

Ari2d Nedt

100970 0s 3 symbol stub for: _close
$0.02 Nri3a

2100091 210

19

Disassembly of code run in DriverEntry

lea
mov
lea
xor
mov
lea
mov
mov
mov
lea
mov
lea
mov
lea
mov
lea
mov

rax, DriverUnload

[rsi+68h], rax

rax, Dispatch_InternalDeviceControl

ecx, ecx

[rsi+BEBh], rax ; Set IRP_MJ_ INTERNAL_DEVICE_CONTROL
rax, Dispatch_Dunny

r8d, ‘Pedl’

[rsi+70h], rax ; Set IRP_MJ_CREATE
[rsi+8Oh], rax ; Set IRP_MJ WRITE

rax, Dispatch_DeviceControl

[rsi+BEBh], rax ; Set IRP_MJ DEVICE_CONTROL
rax, Dispatch_Power

[rsi+120h], rax ; Set IRP_MJ_POWER

rax, Dispatch_PnP

[rsi+148h], rax ; Set IRP_MJ_PNP

rax, Dispatch_SystemControl

[rsi+128h], rax ; Set IRP_MJ_SYSTEM_CONTROL

Exposing Bootkits with BIOS Emulation - Haukli, BlackHat USA 2014

Governments as Malware Authors - Hypponen, BlackHat USA 2014

Gauss encryption

< -
FSecure g

5 min

» Security nerd — T-Shaped!"

« Started LegbaCore in January 2015

* Realmz ~1996, Mac OS 8, BEQ->BNE FTW!
« x86 ~2002

* Know or have known ~5 assembly
languages(x86, SPARC, ARM, PPC,
68HC12). x86 is by far the most complex.

* Routinely read assembly when debugging my
own code, reading exploit code, and reverse
engineering things

« Thttp://www.valvesoftware.com/company/Valve _Handbook LowRes.pdf

About You?

(What are you looking
to get out of the class?)

* Where do you work? |
 What is your job?

* Do you know which environment you will be
using this knowledge in?

10 min

2 min

About the Class

« The intent of this class is to expose you to the most
commonly generated assembly instructions, and the
most frequently dealt with architecture hardware.

— 64 bit instructions/hardware
— Implementation of a Stack
— Common tools

« Many things will therefore be left out or deferred to
later classes.
— Floating point instructions/hardware
— 16 bit instructions/hardware
— Complicated or rare instructions

— Instruction pipeline, caching hierarchy, alternate modes of
operation, hw virtualization, etc (see other classes for those)

About the Class 2

* The hope is that the material covered will be provide
the required background to delve deeper into areas
which may have seemed daunting previously.

« Because | can’t anticipate the needs of all job classes,
if there are specific areas which you think would be
useful to certain job types, let me know. The focus
areas are currently primarily influenced by my security
background, but | would like to make the class as
widely applicable as possible.

When you're “done” with this class...
you're not done.
You've just begun.

| want peers, not peons

| want people who can do what | can do, and
ultimately exceed me

* | need people who are better than me to compete
against, in order to get better myself

« Therefore I'm trying to teach as many people what |
know as possible

» To this end | started OpenSecurityTraining.info

* And | highly recommend you continue your education
there once this class is done

Required
Recommended
Approved

Wanted

The Adventures of
a Keystroke N

2 day, Emre Tinaztepe
'™

Memory Analysis R
2 day, TBD

o

Intermediate x86
2 day, Xeno Kovah

rOxOr Skill Tree

"Malware analysis"

Stealth Malware

2 day, Xeno Kovah

-

N I _
\ —
=<~

™
N\ -
L. =~

Life of Binaries
2 day, Xeno Kovah

YOU ARE HERE

Malicious Web
Analysis: Flash &
Javascript

4

Malicious Document
Analysis: Office & PDF

2 day, TBD
Malware
Static Analysis

2 day, Matt Briggs, Frank Poz

T

Reverse Engineering
2 day, Matt Briggs

Malware Dynamic
Analysis

3 day, Veronica Kovah

Intro x86

2 day, Xeno Kovah

Required

Recommended

Approved

- Wanted

Advanced x86:
Trusted Execution Technology (TXT)

2 day, Xeno Kovah

Intro Trusted Advanced x86:

Virtualization
2 day, David Weinstein

Computing

2 day, Ariel Segall

YOU ARE HERE

rOxOr Skill Tree

"Deep system security & trusted computing"

Advanced x86:
Real Mode (BIOS) &
(SMM) System

Management Mode
2 day, John Butterworth

Intermediate x86
2 day, Xeno Kovah

Intro x86

2 day, Xeno Kovah

Intel SGX

2 day

Stealth Malware

2 day, Xeno Kovah

Life of Binaries
2 day, Xeno Kovah

Required

Recommended
Approved

Wanted

Others
TBD

rOxOr Skill Tree

"Exploits"

Exploits 3

2 day, Corey Kallenberg

Exploits 2

2 day, Corey Kallenberg

Vulnerabilities &
Exploits 1

2 day, Corey Kallenberg

Intro x86
2 day, Xeno Kovah

Agenda

« Day 1 - Part 1 - Architecture
Introduction, Windows tools

« Day 1 - Part 2 - Windows Tools &
Analysis, Learning New Instructions

« Day 2 - Part 1 - Linux Tools & Analysis

» Day 2 - Part 2 - Inline Assembly, Read
The Fun Manual, Choose Your Own
Adventure

2 min

Book (64 bit)

” by Ray Seyfarth

» Optional book for the class, to
give you alternative explanations
to my own

Ray Seyfarth * When you see "Book™ page

' ‘ references in the bottom of

slides, it is referring to this book.

2 min

http://www.amazon.com/gp/product/1484921909/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1484921909&linkCode=as2&tag=opensecuinfo-20&linkId=EPDXM3AQYTVSJEET

Book (32 bit)
by Richard Blum.
* This optional book was originally
) picked after the creation of the
e ¥ 32 bit class because it uses
“:’y AT&T assembly syntax & linux as
an example, in contrast to the
Professional majority of my class which is Intel

Assembly

syntax & Windows
» Therefore it just serves as an

Language alternative source of explanation
| in case something from the class
isn’t clear and you want a second
opinion

2 min

http://www.amazon.com/gp/product/0764579010/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0764579010&linkCode=as2&tag=opensecuinfo-20&linkId=KQJSOUENS4OK5JZG

Miss Alaineous

Questions: Ask ‘em if you got ‘em

— If you fall behind and get lost and try to tough it out until you
understand, it's more likely that you will stay lost, so ask
questions ASAP.

Browsing the web and/or checking email during class

is a good way to get lost

2 hours, 10 min break, 1.5 hours, lunch, 1 hour/5 min
break after that

It's called x86 because of the progression of Intel
chips from 8086, 80186, 80286, etc. | just had to get
that out of the way. :)

Miss Alaineous 2

Intel originally wanted to break from x86 when moving
to 64 bit. This was Itanium aka |IA64 (Intel Architecture
64 bit). However, AMD decided to extend x86 to 64
bits itself, leading to the AMDG64 architecture. When
Itanium had very slow adoption, Intel decided to bite
the bullet and license the 64 bit extensions from AMD.

In the Intel manuals you will see the 64 bit extensions
referred to as IA32e or EMT64 or Intel 64 (but never
|A64. Again, that's Itanium, a completely different
architecture).

You might sometimes see it called amd64 or x64 by
MS or some linux distributions

In this class we're going to go with x86-64

What you're going to learn:

#include <stdio.h>

int main(){
printf("Hello World\n™);
return 0x1234;

main:

000000013F511000
000000013F511004
000000013F51100B
000000013F511011
000000013F511016
000000013F51101A

Is the same as...

sub rsp, 28h

lea rcx, [globallocalestatus-10h (13F513000h)]
call gword ptr [imp printf (13F512100h)]

mov eax,1234h

add rsp, 28h

ret

Windows Visual C++ 2012 Express

/GS (buffer overflow protection) option turned off

Disassembled with Visual C++

which could be viewed as...

0000000140001000 <.
140001000:
140001004:
14000100b:
140001011:
140001016:
14000101a:

48
48
ff
b8
48
c3

text>:

83
8d
15
34
83

ec
od
07
12
cd

28

ad 11 00 00
11 00 0O

00 00

28

sub
lea
callqg
mov
add
retqg

$0x28,%rsp

Oxllad(%rip),%rcx # 0x1400021b8
*0x1107(%rip) # 0x140002118
$0x1234, %eax

$0x28,%rsp

Windows Visual C++ 2012 Express
/GS (buffer overflow protection) option turned off

Disassembled with objdump -d from cygwin

8048374:
8048378:
804837b:
804837e:
804837f:
8048381:
8048382:
8048385:
804838c:
8048391 :
8048396:
8048399:
804839%a:
804839b:
804839%e:
804839f:

which is equivalent to...

08048374 <main>:

8d
83
ff
55
89
51
83
c’7
e8
b8
83
59
5d
8d
c3
90

dc
el
71

eb5

ec
04
43
2a
c4

61

24
f0
fc

04
24
ff
00
04

fc

Ubuntu 12.04, GCC 4.2.4

04

60 84 04 08
ff ff
00 00

lea
and
pushl
push
mov
push
sub
movl
call
mov
add
pop
pop
lea
ret
nop

0x4 (%rsp), %rcx
SOxfffffff0, $rsp
-0x4 (%rcx)

srbp

srsp, srbp

$rcx

$0x4, $rsp
$0x8048460, ($rsp)
80482d4 <puts@plt>
$S0x1234, $eax
$0x4,%rsp

%rcx

srbp

-0x4 (%rcx), %rsp

Disassembled with “objdump -d”

which is equivalent to...

_main:
0000000100000£40 pushg
0000000100000£41 movq
0000000100000£44 subg
0000000100000£48 leag
"Hello World!"
0000000100000f4¢£ movl
0000000100000£56 movb
0000000100000£58 callqg
0000000100000£54d movl
0000000100000f62 movl
0000000100000f65 movl
0000000100000f67 addg
0000000100000f6b popg
0000000100000f6C ret

srbp

%rsp, %Srbp

$0x10, %rsp

0x3f ($rip), %Srdi ## literal pool for:

$0x0, -0x4 (%rbp)

$0x0, %al

0x100000f6e ## symbol stub for: printf
$0x1234, %ecx

%eax, -0x8 (%rbp)

%$ecx, %eax

$0x10, %rsp

%rbp

Mac OS 10.9.4, Apple LLVM version 5.1 (clang-503.0.40)
Disassembled from command line with “otool -tV”

.text:
.text:
.text:
.text:
:0000000140001008B

.text

.text:
.text:
.text:

But it all boils down to...

0000000140001000
0000000140001000
0000000140001000
0000000140001004

0000000140001011
0000000140001016
000000014000101A

main

sub
lea
call
mov
add
retn

rsp,
rcx,

cs:

eax,

rsp,

28h

Format ; "Hello World!\n"
imp printf

1234h

28h

Windows Visual C++ 2012, /GS (buffer overflow protection) option turned off
Optimize for minimum size (/O1) turned on
Disassembled with IDA Pro 6.6 (with some omissions for fitting on screen)

Take Heart!

* By one measure, only 14 assembly

instructions account for 90% of code!
— http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Bilar.pdf

« | think that knowing about 20-30 (not counting
variations) is good enough that you will have
the check the manual very infrequently

* You've already seen 10 instructions, just in the
hello world variations!

