
Introduction to Intel x86-64
Assembly, Architecture,

Applications, & Alliteration

Xeno Kovah – 2014-2015
xeno@legbacore.com

All materials is licensed under a Creative
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's ‘Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

Prepared VM

• student/student
• root/toor (but you shouldn’t need this account,

student has sudo)

If you are using some other Linux system, just
put bomb-x64 on it (from the “TheseGoInVMs”
class material directory), and make sure you
have gdb installed

Bomb lab

• From CMU architecture class - http://
csapp.cs.cmu.edu/public/labs.html

• Thanks to Randal E. Bryant & David R.
O’Hallaron for providing the source code so it
could be ported to x86-64 (and Windows in
the Intro RE class, and ARM in the Intro ARM
class)

• The textbook for the class which the bomb lab
is a part of is “Computer Systems: A Programmer's
Perspective, 2nd Edition, Prentice Hall, 2011; Bryant
and O'Hallaron”

http://csapp.cs.cmu.edu/public/labs.html
http://www.amazon.com/gp/product/0136108040/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0136108040&linkCode=as2&tag=opensecuinfo-20&linkId=6LT5HKEUJJYSI3T4

Bomb lab 2

• Goal is to reverse engineer multiple phases to
determine the program’s desired input

• Create a text file with answers, one per line,
named “answers”

• gdb -x myCmds bomb-x64
• run with “r answers”
• Should add/remove breakpoints on the

different phases as you go along

Bomb lab - EXPERT MODE!

• If you already know a thing or two about asm
(and were just here for the 64 bit update), let’s
see how far you can get how fast if you play it
on expert mode, without symbol information.
Execute the following command in the
directory where the bomb resides:
• strip bomb-x64

• This is more like what you will actually see
with malware. You’re not going to get symbols
in that case.

• Now go ahead and see how fast you can go
through the rounds ;)

Phase_2 hint

• sscanf() is defined as follows:
• int sscanf(const char *str, const char *format, ...);

• So if it was e.g. “sscanf(foo, “%d %d”, &a, &b)”
• It would take whatever string was pointed to by the

first argument, parse it according to the second format
string argument, and then store the parsed out values
in the variables which were given by the subsequent n
arguments (for n = 2 in this case)

• “On success, the function returns the number of
variables filled"

Phase_2 hint

• sscanf() is defined as follows:
• int sscanf(const char *str, const char *format, ...);

• So if it was e.g. “sscanf(guess, “%d %d %d %d %d
%d”, &var1, &var2, &var3, &var4, &var5, &var6)”…
then whatever numbers were given in the guess
string, would be placed into the respective variables

• And sscanf() returns the number of successfully
parsed format elements

Break glass in case of
emergency

• For purposes of doing the lab, you should not use this
• Do it the rigorous way the first time, then do it the faster way

the next times
• But in the real world, if you’re REing something in gdb, you can

• To set a register to a specific value
• set $rax = 0x1234

• To set a memory location to a specific value
• set {int}0x7FFFFFFFE80 = 0x1

GDB/Bomb Lab Cheat Sheet

• Christian Arllen found this, and it has
many more example of gdb syntax, as
well as some help for if you get stuck on
the lab

• http://condor.depaul.edu/~jriely/
csc373fall2010/extras/mygdbnotes.txt

• (get it on google cache while you can,
because it's gone now)

Optional Labs

• perl r0x0r-arcade-read-only/start.pl
• Prototype games that I haven’t had time to work on

since 2012, let alone update for x86-64…

•  Some learning requires grinding!
•  But it can still be accelerated!

•  http://code.google.com/p/roxor-arcade
–  Such timeless classics as:
–  BinDeciHex
–  The *other* ESP game
–  1 step forward 3 steps back
–  BinaryScavengerHunt
–  May your buffer overfloweth

•  Quick demo of "BinaryScavengerHunt" if I'm using my own
laptop to present.

Fr
om

 “T
ra

in
in

gS
ec

ur
ity

E
xp

er
ts

A
tS

ca
le

” p
re

se
nt

ed

by
 X

en
o

at
 th

e
N

IS
T-

N
IC

E
 c

on
fe

re
nc

e
20

14

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

2000"

0" 50" 100" 150" 200" 250" 300"
Ga

m
e%
Sc
or
e%

Seconds%since%start%of%game%

Xeno%playing%BinaryScavengerHunt%Round%1%and%2%three%=mes%in%a%row%
(seed%=%1349311990)%

Try1"

Try2"

Try3"

From “Training Security Experts At Scale” presented
by Xeno at the NIST-NICE conference 2014

Guess who never asked
any questions?

!1000$

!500$

0$

500$

1000$

1500$

2000$

0$ 200$ 400$ 600$ 800$ 1000$ 1200$ 1400$ 1600$ 1800$ 2000$

Ga
m
e%
Sc
or
e%

Seconds%since%start%of%game%

Oct%19th%2012%Life%of%Binaries%class%playing%Round%1%&%2%%
of%the%BinaryScavengerHunt%game%

Student1

Student2

Student3

Student4

Student5

Student6

Student7

Student8

Student9

Student10

From “Training Security Experts At Scale” presented
by Xeno at the NIST-NICE conference 2014

