Introduction to Intel x86-64
Assembly, Architecture,
Applications, & Alliteration

Xeno Kovah — 2014-2015
xeno@legbacore.com

All materials is licensed under a Creative
Commons “Share Alike” license.

 http://creativecommons.org/licenses/by-sa/3.0/

You are free:

10 Share — 10 copy, dis¥ribuie and transma the work
10 Remix — to adapt the work

Under the following conditions:

Attnbution — You must attnbute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

yOour use of the work

Share Alike — If you aher, transform, or build upon this work, you ma
disinbule the resulbng work only under the same, Similar or 3 compalible

license

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work

"Is derived from Xeno Kovah's ‘Intro x86-64" class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

Discussion: variable-length
opcodes

Any given sequence of bytes can be interpreted in
different ways, depending on where the CPU starts
executing it from

This has many subtle implications, but it seems to get
abused the most in the security domain

Examples: inability to validate intended instructions,
return-oriented-programming, code obfuscation and
polymorphic/self-modifying code

In comparison, RISC architectures typically have fixed
instruction sizes, which must be on aligned
boundaries, and thus makes disassembly much
simpler

Variable-length opcode
decoding example

0x4004ed <main>: push %rbp

0x4004ee <main+1>: mov %rsp,%rbp

0x4004f1 <main+4>: movl $0xdeadbeef,-0x4(%rbp)
0x4004f8 <main+11>: mov -0x4(%rbp),%eax

0x4004fb <main+14>: mov %eax,%eax (gdb) x/10i $rip+3
0x4004fd <main+16>: mov %eax,%eax 0x4004f0 <main+3>: in $0xc7,%eax
0x4004ff <main+18>: mov %eax,-0x4(%rbp) 0x4004f2 <main+5>: rex.RB cld
0x400502 <main+21>: pop %rbp 0x4004f4 <main+7>: out %eax,(%dx)
0x400503 <main+22>: retq 0x4004f5 <main+8>: mov $0x458bdead,%esi
0x4004fa <main+13>: cld

(gdb) x/10i $rip+9 0x4004fb <main+14>: mov %eax,%eax
0x4004f6 <main+9>: lods %ds:(%rsi),%eax 0x4004fd <main+16>: mov %eax,%eax
0x4004f7 <main+10>: fimul -0x3f7603bb(%rbx) 0x4004ff <main+18>: mov %eax,-0x4(%rbp)
0x4004fd <main+16>: mov %eax,%eax 0x400502 <main+21>: pop %rbp

0x4004ff <main+18>: mov %eax,-0x4(%rbp) 0x400503 <main+22>: retq
0x400502 <main+21>: pop %rbp
0x400503 <main+22>: retq (gdb) x/10i $rip+15
0x4004fc <main+15>: rorb
$0x5d,-0x3ba7640(%rcx)
0x400503 <main+22>: retq

g8@bssnislgn called “self-synchronizing” because it does eventually seem to get back to the correct asm. That’s not a useful property for execution, only for disassemblers trying to speculate on a correct

Discussion: variable-length
opcodes

« An interesting property of x86 is that even if you pick a
wrong offset to start disassembling from, very
frequently the disassembly will re-synchronize with the
original, intended, instruction sequence

* In the preceding examples you can see that when
disassembly is started at +3 bytes in, it re-synchs by
+14 bytes. When started at +9, it re-synchs by +16,
etc.

« This was noted also in “Obfuscation of Executable
Code to Improve Resistance to Static Disassembly”
by Linn & Debray

— http://www.cs.arizona.edu/solar/papers/CCS2003.pdf

http://www.cs.arizona.edu/solar/papers/CCS2003.pdf

