Advanced x86:

BIOS and System Management Mode Internals
SMM & Caching

Xeno Kovah && Corey Kallenberg
LegbaCore, LLC

8

LEGBACORE

WE DO DIGITAL VOODOO

All materials are licensed under a Creative

Commons “Share Alike” license.
http://creativecommons.org/licenses/by-sa/3.0/

You are free:

@ to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

© ®

Attribution condition: You must indicate that derivative work
"Is derived from John Butterworth & Xeno Kovah'’s ‘Advanced Intel x86: BIOS and SMM’ class posted at http://opensecuritytraining.info/IntroBIOS.html” 2

SMRAM and Caching

From Intel Vol. 3. Ch. "Memory Cache Control"

Cache Basics

« Temporary storage located on the CPU

 Accesses to data/instructions in cache are much faster than
those to physical memory

« Caching is available in all operating modes, including SMM

« Caching type for a physical memory range is defined in
Memory-Type Range Registers (MTRRS)

« MTRRs are a type of MSR (Model-Specific Register) that can
be set to specify the type of CPU caching for ranges of
physical memory

« Typically configured by BIOS but can also be configured by
the operating system as needed

1A32_MTRR_PHYSBASERN Register IA32_MTRR_PHYSMASKn Register
63 MAXPHYADDR 1211 87 0 63 MAXPHYADDR 121110 0
Reserved PhysBase Type Reserved PhysMask \ Reserved
PhysBase — Base address of rangeJ PhysMask — Sets range maskJ
Type — Memory type for range V — Valid
D Reserved

MAXPHYADDR: The bit position indicated by MAXPHYADDR depends on the maximum

physical address range supported by the processor. It is reported by CPUID leaf
function 80000008H. If CPUID does not support leaf 80000008H, the processor
supports 36-bit physical address size, then bit PhysMask consists of bits 35:12, and

bits 63:36 are reserved.

From Intel Vol. 3. Ch. "Memory Cache Control"

Memory Caching Types

« Physical memory ranges can be defined as having one of these types of
caching properties

« The only one we'll discuss is the one that was the subject of the dual
discovery by Duflot et al. and then later Wojtczuck et al.

— Getting into SMRAM: SMM Reloaded,
https://cansecwest.com/csw09/csw09-duflot.pdf

— Attacking Memory via Intel CPU Cache Poisoning,
http://invisiblethingslab.com/resources/misc09/smm cache fun.pdf

* The attack is brilliant in its simplicity

Table 11-8. Memory Types That Can Be Encoded in MTRRs

Memory Type and Mnemonic Encoding in MTRR
Uncacheable (UC) OOH
Write Combining (WC) O1H
Reserved* 02H
Reserved* 03H
Write-through (WT) 04H
Write-protected (WP) 05H
Writeback (WB) 0O6H
Reserved* 7H through FFH

NOTE:
* Use of these encodings results in 3 general-protection exception (#GP).

Write-back (WB)

« The point of Write-back caching is to reduce the amount of
bus traffic between the processor and memory

« Reads come from cache lines on cache hits

« Writes are performed in the cache and not immediately
written/flushed to memory

 Both read and write misses cause cache fills

* Modified CPU cache lines are written back (write-back) to
memory at a later time*

« Simply put, reading/writing from/to a memory region that uses
write-back caching will initially fill a line in the CPU cache

« Subsequent reads/writes from/to that address will be from/to
cache instead of memory

« Until the processor writes-back that cache to memory*

*Read the Intel Software Developers Guide Volume 3

https://cansecwest.com/csw09/csw09-duflot.pdf

.mmu - SO LN

(D_LCK bit)

.. . .
* The access control point 1s in the chipset and the chipset does
not “see” what happens inside the cache.

* Code running on the CPU can decide the caching strategy.

* Plus, the chipset does not even know where the SMRAM really
is (SMBASE only known to the CPU)).

« Isn’t there a coherency problem here?

Loic Duflot - SGDN/ DCSSI - SMM Reloaded — CanSecWest 2009 19
http:/ /www ssi.gouv.fr

https://cansecwest.com/csw09/csw09-duflot.pdf

E N Basic idea: SMI handler stays in
[presice eanire |
— cache
ratxrak S
SMI triggered
Protected mode SMM Protected mode
CPU CPU CPU
MMU
MMU MMU SMI handler stays
in cache
/"
Cache] .|
f
SMRAM | SMRAM SMRAM
SMI handler
D LCK protection D _LCK protection
Loic Duflot - SGDN/ DCSSI - SMM Reloaded — CanSecWest 2009 21 -

http:/ /www ssi.gouv.fr

https://cansecwest.com/csw09/csw09-duflot.pdf

Basic idea: attacker writes to the
SMRAM

* When the CPU is not in SMM, the CPU cannot write in
SMRAM. But if the SMRAM 1is cached in Write Back mode, the
CPU only writes to the cached version and not in memory.

Protected mode Attacker writes to SMRAM Protected mode
CPU CPU
MMU SMI handler stays MMU Modified SMI
in cache L handler
~ Pel = ke
v
|
SMRAM SMRAM
D LCK protection D LCK protection
Loic Duflot - SGDN/ DCSSI - SMM Reloaded — CanSecWest 2009 2 -

http:/ /www ssi.gouv.fr

The fix: SMRR

« The preceding is a great example of how security researchers
can influence industry for the better. Damn fine job.

« System-Management Range Register (SMRR) was introduced
in Intel’'s x64 architecture”

* Provides a PHYSBASE/PHYSMASK pair just like MTRRs

* Prevents the kind of attack that we just saw in the preceding
example

« SMRR restricts access to the address range defined in the
SMRR registers

* Defines the memory type (caching) for the SMRAM range
« SMRRs can be written to only when the processor is in SMM
« SMRR takes priority over MTRR in case of overlapping ranges

* This is one of the only architecture-dependent security mechanisms. So far up to this point all has been x32/x64 agnostic

SMRR

IA32_SMRR_PHYSBASE Register
63 31 1211 87

Reserved PhysBase Type

PhysBase — Base address of rangeJ
Type — Memory type for range

63

IA32_SMRR_PHYSMASK Register

31

121110

Reserved

PhysMask

Vv

Reserved

PhysMask — Sets range mask J

V — Valid

« When the processor is in SMM:

— Memory accesses to this range will use the memory type defined in

SMRR_PHYSBASE
* When the processor is not in SMM:

— Memory reads return a fixed value (OxFF in my experience)

— Memory writes are ignored
— Memory type is Uncacheable

Verify SMRR Support: IA32 MTRRCAP

[Command

|-G fES)

EH=e
|

>rdmsr Oxfe
Read MSR OxFE
63 56 55

: High 32bit (EDX)
48 47 40 39

= 0x00000000, Low 32bit (EAX)
32 31 24 23 16 15

00000000-00000000-00000000—00000000—OOOOOOOO—OOOOOOOO—OOOCH._IO1—00000111

/

= 0x00000DO7
8 7 0

FEH 254

IA32_MTRRCAP (MTRRcap)

MTRR Capability (RO) Section/11.11.2.1,
“IA32_MTRR_DEF_TYPE

06_01H

7.0 VCNT: The nu ariable memory
type range#’in the processor.

8 Fixed /ange MTRRs are supported when
set.

9 Refserved.

10 C Supported when set.

I 11 SMRR Supported when set.
63:12 Reserved.

« SMRR is supported on a system if bit 11 in the
IA32_ MTRRCAP MSR is set

* Verify next that it is being used

12

SMRR MSR Number

ﬁ_(ﬁ 160 | MSR_SMRR_PHYSBASE Unique
LF_Z_H 498 IA32_SMRR_PHYSBASE
11:0
31:12
63:32 7:0
| 118
For the reference 31:12
E6400 (Core2Duo)
63:32

« If you try to read the SMRR of your system, be sure to verify its
location using the developers guide (MSR chapter)

« The MSR register addresses are non "architectural" and will

therefore differ between architectures

— That’s why they are called Model-Specific Registers

« RW-E does not appear to handle exceptions well since reading the
wrong MSR will crash your system

— As of latest version

Homework heads up

* Find the value of SMRR_PHYSBASE for your
particular hardware

