
Intermediate x86
Part 4

Xeno Kovah – 2010
xkovah at gmail

All materials are licensed under a Creative
Commons “Share Alike” license.

•  http://creativecommons.org/licenses/by-sa/3.0/

2

3

Interrupts & Debugging
•  We know that IDT[3] is the Breakpoint Exception, and

that it’s important enough for INT 3 to have a
separate one byte opcode form (0xCC).

•  INT 3 is what debuggers are using when they say
they are setting a “software breakpoint” (the default
breakpoint in most cases)

•  When a debugger uses a software breakpoint, what it
does is overwrite the first byte of the instruction at the
specified address. It keeps its own list of which bytes
it overwrote and where. Then when breakpoint
exception is received, it looks up the location,
replaces the original byte and lets the instruction
execute normally. Then typically it overwrites the first
byte again (subject to configuration) so that the
breakpoint will be hit if the address is executed again.

Lab: ProofPudding.c

•  A program which reads its own memory
in order to confirm that when a
breakpoint is set, it overwrites a byte
with the 0xCC form of the breakpoint
interrupt, INT 3

4

5

Hardware Support for Debugging
•  Most debuggers also have support for something

called a “hardware breakpoint”, and these
breakpoints are more flexible than software
breakpoints in that they can be set to trigger
when memory is read or written, not just when
it’s executed. However only 4 hardware
breakpoints can be set.

•  There are 8 debug registers DR0-DR7
–  DR0-3 = breakpoint linear address registers
–  DR4-5 = reserved (unused)
–  DR6 = Debug Status Register
–  DR7 = Debug Control Register

•  Accessing the registers requires CPL == 0
–  MOV DR, r32
–  MOV r32, DR

Vol. 3b, Sect. 18

6

Picture This

7

DR7 - Debug Control Register

•  L0-3 (local breakpoint enable) flags - Enables the
DR0-3 breakpoint. But these flags are cleared on task
switches to ensure that they do not fire when dealing
with a different task.

•  G0-3 (global breakpoint enable) flags - Enables the
DR0-3 breakpoint. Does not get cleared on task
switch, which is what makes it global obviously.

•  LE & GE (local and global exact breakpoint enable)
flags - If set to 1, enables detection of the exact
instruction that caused a data breakpoint. Not
supported on P6 microarchitecture and later, but if
you need maximum compatibility for exact breakpoint
detection you’re recommended to set both to 1.

8

DR7 - Debug Control Register (2)

•  GD (General Detect) flag - If set to 1, causes
a debug exception prior to MOV instructions
which access the debug registers. The flag is
cleared when the actual exception occurs
though, so that the handler can access the
debug register as needed.

•  The R/W0-3 are interpreted as follows:
–  00 = Break on instruction execution only.
–  01 = Break on data writes only.
–  If(CR4.DE == 1) then 10 = Break on I/O reads or writes.
–  If(CR4.DE == 0) then 10 = Undefined.
–  11 = Break on data reads or writes but not instruction

fetches.

9

DR7 - Debug Control Register (3)

•  LEN0-4 bits specify what size the address stored in
the DR0-3 registers should be treated as.
–  00 = 1-byte
–  01 = 2-bytes
–  10 = Undefined (or 8 bytes, see note below)
–  11 = 4-bytes.

•  While you might set a 1 byte size for an address
pointing at the first byte of an instruction, on a break-
on-execute, you might want to set a 4 byte breakpoint
on writes to a memory location you know to be a
DWORD.

•  “For Pentium 4 and Intel Xeon processors with a CPUID
signature corresponding to family 15 (model 3, 4, and 6),
break point conditions permit specifying 8-byte length on data
read/write with an of encoding 10B in the LENx field.”

10

DR6 - Debug Status Register

•  B0-B3 (breakpoint condition detected) flags - When
the B{0,1,2,3} bit is set, it means that the {0th,1st,
2nd,3rd} condition specified in DR7 has been
satisfied. The bits are set even if the DR7 says that
condition is currently disabled. I.e. software needs to
crosscheck these bits against whether it currently
cares.

•  BD (debug register access detected) flag - Indicates
that the next instruction will try to access the debug
registers. This flag only enabled if GD (general
detect) flag in DR7 is set. Thus this signals if
someone else was trying to access the debug
registers. NO! MINE!

11

DR6 - Debug Status Register (2)

•  BS (single step) flag - If set, the debug
exception was triggered by single-step
execution mode (talked about later).

•  BT (task switch) flag - Related to TSS so we
don’t care

•  “Certain debug exceptions may clear bits 0-3. The
remaining contents of the DR6 register are never
cleared by the processor. To avoid confusion in
identifying debug exceptions, debug handlers should
clear the register before returning to the interrupted
task.” Seems like an important point if you’re making
a debugger :)

12

So what actually happens when a
hardware breakpoint fires?

•  It fires IDT[1], a Debug Exception
•  When it is an execute breakpoint or general detect

(someone trying to access debug regs) it’s a fault.
•  For other cases It’s A Trap!

–  That means if it was a break on write, the data is
overwritten before the exception is generated. A
handler which wants to show the before and after is
responsible for keeping a copy of the before value.

•  Instruction breakpoints are actually detected before
the instruction executes. Therefore if the handler
doesn’t remove the breakpoint, and it just returned,
the same exception would be raised over and over.

•  This is where the Resume Flag (RF) comes into play

13

Resume Flag (RF in EFLAGS)
•  When the RF is set, the processor

ignores instruction breakpoints.
•  To set the flag, a debug interrupt

handler would manipulate the EFLAGS
stored on the stack and then use IRETD
(POPF, POPFD, and IRET do not transfer
RF from the stack into EFLAGS)

•  “The processor then ignores instruction
breakpoints for the duration of the next
instruction.” “The processor then
automatically clears this flag after the
instruction returned to has been
successfully executed.”

14

Trap Flag (TF in EFLAGS)

•  Only being able to invoke the debug exception
handler on 4 addresses is somewhat limiting.

•  When TF is 1, it causes a debug exception after
every instruction. This is called “single-step” mode.
–  Useful for capabilities such as “step out” which just steps

until it steps through a RET
•  Remember that we said that if the debug exception is

in response to single stepping, it sets the BS flag in
DR6.

•  The processor clears the TF flag before calling the
exception handler, so if it wants to keep single-
stepping it needs to set it again before returning.

•  Also, the INT and INTO instructions clear TF. So a
single stepping debugger handler should compensate
accordingly.

WinDbg Hardware Breakpoints
•  Hardware Breakpoint = ba rather than bp. Stands for

break on access, where access can be read/write/
execute or port IO. Below is a simplified form of the
command (see help page for full form)

•  ba Access Size Address
–  Access

•  r = read/write
•  w = write
•  e = execute
•  i = I/O port (talked about later)

–  Size. Width of data over which you want the
breakpoint to have effect. Must be 1 for access =
e, but can be 1, 2, 4, or 8 for other types

–  Address. Where you want the breakpoint to be
targeted.

15

HW Breakpoint Examples
•  ba e 1 0x80541ac0

– Break on execute of address 0x80541ac0
(windbg specifies size must be 1 on break
on execute)

•  ba w 4 0x80541ac0
– Break if anyone reads from the 4 bytes

specified by 0x80541ac0 to 0x80541ac4
•  ba r 2 0x80541ac0

– Break if anyone reads or writes from byte
0x80541ac0 or 0x80541ac1(remember, the
debug registers don’t have a way to
specify only read)

16

17

Lab: Watching the debugger debug

•  TryToRunTryToHide.c take 2
•  A discourse on the efficacy of using a

hardware breakpoint on the INT 3
handler, rather than a software
breakpoint ;)

18

Malware Use of Debug Regs
•  “A packer such as tElock makes use of the

debug registers to prevent reverse-engineers
from using them. “
–  http://www.securityfocus.com/infocus/1893

•  The Art of Unpacking (lists various anti-debug tricks
including reading the debug registers)
–  https://www.blackhat.com/presentations/bh-usa-07/Yason/

Whitepaper/bh-usa-07-yason-WP.pdf

•  But I thought you had to be running in ring 0
to manipulate debug registers? Well, yes, but
windows saves thread information (including
the contents of the debug register) into a
CONTEXT structure, and provides userspace a
way to get and set thread context, thus letting
malware detect .

19

The New Stuff
(Which I don’t yet know enough about to teach.

Read 3b, Sect. 18.4 on your own)
•  “P6 family processors introduced the ability to set breakpoints

on taken branches, interrupts, and exceptions, and to single-
step from one branch to the next. This capability has been
modified and extended in the Pentium 4, Intel Xeon, Pentium M,
Intel CoreTM Solo, Intel CoreTM Duo, Intel CoreTM2 Duo, Intel
CoreTM i7 and Intel AtomTM processors to allow logging of
branch trace messages in a branch trace store (BTS) buffer in
memory.”

•  The branch trace is basically a stack which holds
pairs of addresses which represent the source of the
branch and the destination.

•  Pedram Amini talked about the performance
improvement vs. single step mode here:
–  http://www.openrce.org/blog/view/535/

Branch_Tracing_with_Intel_MSR_Registers

20

Port I/O
•  “In addition to transferring data to and from

external memory, IA-32 processors can also
transfer data to and from input/output ports
(I/O ports).”

•  “I/O ports are created in system hardware by
circuity that decodes the control, data, and
address pins on the processor. These I/O ports
are then configured to communicate with
peripheral devices.”

•  “An I/O port can be an input port, an output
port, or a bidirectional port.”

Vol 1, Sect 13

21

Ports

•  There are 2^16 8bit IO ports, numbered
0-0xFFFF.

•  Can combine 2 or 4 consecutive ports
to achieve a 16 or 32 bit port.

•  “32-bit ports should be aligned to
addresses that are multiples of
four (0, 4, 8, ...).”

22

Accessing the Ports
•  You cannot use the IN/OUT instructions to

access the ports unless you have sufficient
privileges.

•  There is a 2 bit IOPL (I/O Privilege Level) field
in EFLAGS. You can only perform IO if CPL
<= IOPL.

•  Also FYI, the STI/CLI instructions we saw
before also are only allowed if CPL <= IOPL.

•  Most OSes set IOPL to 0
•  But think back to privilege rings. An

appropriately modified OS (say, a
paravirtualized one), could allow IOPL to be
something like 2.

23

IN - Input from Port

•  Note it’s DX, not DL. That means the DX form can specify all
2^16 ports, but the IMM8 form can only specify 2^8 ports.

•  “When accessing a 16- and 32-bit I/O port, the operand-size
attribute determines the port size.” (Because as usual there’s
an overloaded opcode for 16/32 bit form)
–  Remember if you’re in a 16 bit segment it’s 16 bit, if you’re in a 32

bit segment it’s 32 bit. But you can override it with an operand size
instruction prefix which is talked about later.

24

OUT - Output to Port

•  Basically the same caveat as IN

Lab: ParlorTrick.c

•  Accessing the vmware “backdoor” IO
port.

•  For more tricks, see VMBack -
http://chitchat.at.infoseek.co.jp/vmware/backdoor.html

25

The 8042 keyboard controller

•  Lots of good info here:
http://www.computer-engineering.org/ps2keyboard/

•  The original IBM PC used a chip by the
name of 8042 as the keyboard
controller. PS/2 keyboards use this chip,
and luckily for us, so do VMWare virtual
machines by default (since PS/2 is way
simpler than USB)

•  The 8042 has a status/command
register mapped to IO port 0x60 and a
data register mapped to IO port 0x64 26

Lab: basic_hardware.c
Spooky action at a distance

•  Code taken as-is from
http://www.rootkit.com/vault/hoglund/
basic_hardware.zip

•  Starts a timer in the kernel which calls a
function every 300ms. That function
talks to the keyboard controller using
port IO, and sets a new value for the
LED indicator lights for Num/Caps/Scroll
lock 27

Lab: bhwin_keysniff.c
Low level keystroke logging

•  Code taken from
http://www.rootkit.com/vault/hoglund/
basic_keystroke.zip with changes and hackery to get
it to work as noted inline

•  Every time a key is pressed/released, it triggers an
interrupt. In our case it is INT[0x93] which is usually
handled by i8042prt.sys’s
I8042KeyboardInterruptService() function.

•  Keys are represented as “scancodes” indicating
position on the keyboard, not ASCII values.

•  This code hooks the keyboard interrupt(i.e. puts itself
into the IDT descriptor) and then reads and stores the
incoming scancode, puts it back into the buffer, and
then calls the original handler. 28

HW Breakpoint Examples
•  WinDbg commands to set a breakpoint

on port IO
•  ba i 1 0x60

– Break on 1 byte access to port address
0x60

– The value read in will be in al
•  ba i 4 0x60

– Break on 1-4 byte access to port address
0x60

– The value read in will be in al, ax, or eax
depending on the size used in the IN
instruction

29

Debug Reg Keyboard Sniffer
•  We just saw from the bhwin_keysniff.c source, that you speak to

port 0x60 to talk to the 8042 keyboard controller.
•  We saw earlier that the debug registers have an option to break

on port IO access.
•  Combine, and you get a keyboard sniffer which hooks the debug

breakpoint handler rather than keyboard handler (but still has to
hook the IDT to catch the debug register interrupts, INT 1).

•  It is admittedly fragile. If someone overwrites the debug reg
entry, purposely or accidentally, it is blinded. But it could keep
polling to check if it has been removed, and replace itself.
Though sooner or later an analyst is going to wonder why his
hardware breakpoints keep getting missed and overwritten.

•  PoC: http://www.rootkit.com/vault/chpie/0x60_hook.zip

30

•  Foretell the future (values of registers)!
•  Impress friends and cow orkers!
•  Be the life of the party!
•  Burn excess calories!
•  Live in infamy!
•  Call Now! Just 9 easy payments of 9.99!

31

Tap Into Your Hidden Potential and
Disassemble Binary Using Only
THE POWER OF YOUR MIND!!!

(Dramatic) Intel Instruction Format

32

“r/m32”

33

Explaination of “r/m32s”
•  What I called an “r/m32” is actually the combination

of the “ModR/M” and “SIB” bytes from the previous
slide

•  I had previously promised to get into why AND has a /
4 in its opcode column.

•  Vol. 2a page 3-2 section 3.1.1.1’s explanation of the
opcode column says:

•  “/digit - A digit between 0 and 7 indicates that the ModR/M byte of the
instruction uses only the r/m (register or memory) operand. The reg field
contains the digit that provides an extension to the instruction's opcode.”

•  “/r — Indicates that the ModR/M byte of the instruction contains a register”
•  operand and an r/m operand.
•  And here’s what 3.1.1.2 says about the instruction column:"
•  OK, what’s a “ModR/M” byte?"

34

The src/dst
register
part

The
memory
part

35

This is
misleading.
Looking at the
chart you
would think
you can’t
access [ESP],
but you can (if
your
instruction
either uses /r
(or /5? Any
such
instruction?)

The base register

36

Examples of testing
•  (You have to put each _emit on its own line, I just wrote them

this way for conciseness)
•  __asm{_emit 0x80; _emit 0x20; _emit 0xFF;};
•  80 20 FF and byte ptr [eax],0FFh
•  __asm{_emit 0x80; _emit 0x60; _emit 0x20; _emit 0xFF;};
•  80 60 20 FF and byte ptr [eax+20h],0FFh
•  __asm{_emit 0x80; _emit 0x00; _emit 0xFF;};
•  80 00 FF add byte ptr [eax],0FFh

•  Wait, add? But I’m still using 0x80 at the
front?!

Overloaded Opcodes

•  We’ve already seen cases where
opcodes are overloaded for different
data size, but some like 0x80 are also
overloaded for things like arithmetic/
logical operations

•  Back to the tables!
37

More than one way to skin an
instruction

•  If you read “skin” to mean “remove the skin of”
rather than “put a skin onto”, then you are sick and
should seek help :P

•  ModRM = 0x0 = [EAX]
•  ModRM = 0x8 = [EAX] - To the tables!
•  Note that you only have the option of using either if

your opcode is specified with a /r (like MOV) rather
than a /digit (like AND/ADD)

•  ModRM = 0x4 = Add SIB, SIB = 0x0 = [EAX]
therefore 0x4 0x0 = [EAX]

•  Yet another reason trying to use binary signatures
sucks in x86

38

Instruction Prefixes

•  There are 4 groups of prefixes specified
– Group 1: LOCK/REP/REPNE
– Group 2: Segment Override, Branch Hints

(Seemingly unrelated, but put together
because the prefix bytes are overloaded)

– Group 3: Operand-size override
– Group 4: Address-size override

39
Vol 2a, Sect 2.1.1

40

Lock prefix

•  Lock prefix = 0xF0
•  Locks the memory bus, preventing

anyone else from changing memory
until the instruction is done

•  lock xchg eax, [ebx]
•  Used for creating the simplest mutual

exclusion primitive – mutex
•  Cannot be applied to all instructions

(see the specific instruction’s details)

41

REP prefixes

•  REP/REPE/REPZ = 0xF3
•  REPNE/REPNZ = 0xF2
•  Both apply only to string (movs, stos,

etc-ending-in-s) and in/out instructions
•  REP
•  0xA5 = movsd es:[edi], ds:[esi]
•  0xF3 0xA5 = rep movsd es:[edi], ds:[esi]

42

Segment Override Prefixes
•  “0x2E—CS segment override (use with any branch instruction is

reserved)
•  0x36—SS segment override prefix (use with any branch

instruction is reserved)
•  0x3E—DS segment override prefix (use with any branch

instruction is reserved)
•  0x26—ES segment override prefix (use with any branch

instruction is reserved)
•  0x64—FS segment override prefix (use with any branch

instruction is reserved)
•  0x65—GS segment override prefix (use with any branch

instruction is reserved)”
•  Note, they’re only reserved with conditional branches
•  FF 24 24 jmp dword ptr [esp]
•  65 FF 24 24 jmp dword ptr gs:[esp]
•  8B 04 24 mov eax,dword ptr [esp]
•  26 8B 04 24 mov eax,dword ptr es:[esp]

Branch Hints
•  Tell the processor’s branch prediction unit to assume

that a branch will be taken one way or the other.
•  Implicitly you would only do this when you knew that

your code was structured such that it ran contrary to
the default rules for branch prediction.

•  Since good compilers try to generate code with the
branch prediction defaults in mind, one would only
expect to see this with handcoded asm.

•  0x2E – Branch not taken
•  0x3E – Branch taken
•  These can only be used with conditional jumps (Jcc)
•  Note that they are also valid segment override

prefixes (and since there are more segment override
prefixes than 0x2E/0x3E, I’m not sure why it says the
other things should not be used with branch
instructions)

43

44

Operand and Address Size
Override Prefixes

•  0x66 – Operand Size Override
•  0x67 – Address Size Override
•  In both cases, if something was in a 32

bit segment, it would be using 32 bit
size, but adding these before
instructions forces operands or
addresses to be treated as 16 bits. (And
if things were in 16 bit segments these
prefixes would force things to 32 bits)

Lab: InstructionPrefixes.c

•  More looking at and playing with the
various prefixes

45

46

Madness no more!

This isn’t so
bad!!!

That’s what
you learned! :D

The Big Picture

47

Virtual Memory in Four Fruity Flavors

48

49

Friends we’ve met along the way
•  CPUID – Identify CPU features
•  PUSHFD/POPFD – Push/Pop EFLAGS
•  SGDT/LGDT – Store/Load GDTR
•  SLDT/LLDT – Store/Load LDTR
•  RDTSC – Read TimeStamp Counter
•  MOV CR, r32 – (CR = Control Register)
•  MOV r32, CR – (CR = Control Register)
•  INVLPG – Invalidate page entry in TLB
•  SIDT/LIDT – Load/Store IDTR
•  STI/CLI – Set/Clear Interrupt Flag(IF)

More Friendly Friends!
•  STR/LTR – Load/Store Task Register (TR)
•  UD2 – Undefined Instruction Interrupt
•  INTO – Overflow Interrupt
•  INT n – Software Interrupt, invoke handler n
•  0xCC form of INT 3 – Breakpoint Interrupt
•  IRET – Return from interrupt
•  MOV DB, r32 (DB = Debug Register)
•  MOV r32, DB (DB = Debug Register)
•  IN/OUT – Input/Output Port IO

•  LOCK prefix (if we had time for prefixes) 50

51

Closing thoughts…
•  I tried to present most things in their Intel, mostly-OS-

agnostic form, just using Windows as the example system
due to robustness of the tools (and cause I’ve been
forced to use it lately.)

•  You’re now more qualified to start digging into how any
OS running on the x86 platform works. Just look for the
relevant “* Internals” book, pdfs, presentations, etc.

•  You’re actually quite well suited to start exploring other
architectures as well, having been exposed to the deep
internals of x86 you can see the similarities and
differences in other architectures and reason about where
a given component is more or less trying to achieve the
same functionality as what you already know, etc.

52

Closing thoughts…
•  You’re also more qualified to start digging into how

virtualization works
•  OS is to Process as Hypervisor is to ?
•  OS plays games among processes to share CPU time and

memory. Hypervisor plays games among OSes to share
CPU time and memory (and limited number of system
control registers and structures).

•  Ask yourself the question “If I wanted to trick multiple
OSes into thinking they were accessing the hardware as
normal, when in fact only I do, what would I do with control
registers? IO? Page tables?” Then you start to see why
virtualization is eminently detectable on x86.

•  Then when you think about it in terms of tricking the OS,
think about it in terms of maliciously tricking the OS, and
you’ve got yourself a hypervisor-based rootkit :)

53

Closing thoughts…
•  There are tool-users and tool-builders/

understanders. When you learn reverse
engineering by necessity, you are a tool user.
When you look at the tool builders or the rock
stars of RE, they are the understanders.

•  You now understand a lot more about how things
work than many reverse engineers. (Note to self,
see note)

•  “How does a debugger work” is a great interview
question to ask to and drill down on with
someone with lots of experience reverse
engineering, to help understand if they’re a user
or an understander :)

Closing thoughts…

•  In general, kernel-mode rootkit
researchers come from a background of
knowing a lot of the OS and architecture
level details

•  Very difficult to combat adversaries
which know more than you about the
system you’re defending.

•  You’re all now more qualified to work
on my research! :D Hidden agenda
#427 revealed!

54

To be continued?
•  Once you successfully digest this material you will know nearly as

much stuff about x86 as I do.
•  If there’s an Advanced x86 class, a big reason for it will be for me to

nail down stuff I’ve been meaning to learn better…getting paid to
share the knowledge with you would just be a side benefit :P

•  System Management Mode (hot topic in rootkits…you really want me
to teach this, because if I do, I will try to pull together the existing SMM
attacks into sweet sweet VM escape PoCs)

•  Hardware Virtualization (I’m less interested in virtualization at the
vendor level and more interested in how it works)

•  Intel 64 bit (OS X >= 10.6 now native 64 bit)
•  Advanced Programmable Interrupt Controller (APIC) – Even deeper

into how interrupts work. Useful for sending inter-processor interrupts
on multi-CPU/core systems

•  Intel SpeedStep – manually controlling CPU throttling. A MS guy on a
Windows developer list said if you’re not the OS you shouldn’t be
messing with it, which just makes me want to do it more ;)

•  BIOS maybe, but probably not
55

Other stuff

•  The Life of Binaries class
•  RE class(es?)
•  Vulnerabilities & Exploits class
•  Understanding Malware: Rootkits class?
•  Understanding Malware: Botnets class?
•  Advocacy!
•  Fill out the feedback!

56

