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Abstract—In recent years, it has been a common practice
to execute client authentications for network access inside a
protective tunnel. Man-in-the-middle (MitM) attacks on such
tunneled authentications have been discovered early on and
cryptographic bindings are widely adopted to mitigate these
attacks. In this paper, we shake the false sense of security given
by these so-called protective tunnels by demonstrating that most
tunneled authentications are still susceptible to MitM attacks
despite the use of cryptographic bindings and other proposed
countermeasures. Our results affect widely deployed protocols,
such as EAP-FAST and PEAP.

Index Terms—Protective tunnel, authentication, tunnel-based
EAP method, man-in-the-middle attack, cryptographic binding.

I. INTRODUCTION

During the last decade, people have been searching for cost-

effective solutions that allow the continued use of legacy pro-

tocols for client authentication with existing equipment while

enhancing the protocols’ security. Tunneled authentications

were mainly invented for this purpose. Here, authentications

are executed in a protective tunnel and it is generally believed

that even though some of the legacy authentication methods

may be weak, with the protective tunnel, they can still be

securely used. Current standards efforts within the IETF aim

to define a standard tunneled authentication protocol to support

“password-based authentication mechanism, and additional

inner authentication mechanisms” [1].

A tunneled authentication typically consists of two phases.

First, the client and the authentication server establish a pro-

tective tunnel, usually through a tunnel protocol that employs

public key-based schemes. This phase derives tunnel keys and

generally includes the authentication of the server. TLS is

commonly used as such a tunnel protocol [2]. In the second

phase, the client executes an authentication protocol with the

server inside the tunnel, i.e., protected by the established keys

which is referred to as inner authentication in the remainder

of this paper. The protocol execution commonly ends with the

derivation of a master session key that can be used later on

to derive further keys, e.g., traffic protection keys to protect

subsequent communications.

Asokan et al. [3] identified a man-in-the-middle (MitM)

attack on tunneled authentication protocols that exploit that

tunnel protocol and inner methods are executed independently

from each other. In the same paper, the authors propose bind-

ing the tunnel protocol and inner methods, which is commonly

referred to as cryptographic binding. Such cryptographic bind-

ings have become the de facto mitigation technique for MitM

attacks on tunneled authentications and are implemented in

widely deployed tunneled authentication protocols such as

PEAP [4] and EAP-FAST [5]. In fact, cryptographic bindings

are a mandatory requirement in the IETF standard for tunneled

authentication that is currently defined.

In this paper, we shake the false sense of security given

by tunneled authentications with cryptographic bindings by

demonstrating that most of these tunneled authentications are

still susceptible to MitM attacks. Our analysis shows that

the standard binding approach can only protect strong client

authentications with strong key derivation, while this as well

as all other investigated binding methods fail to protect more

common use cases, such as legacy password and any non-key

deriving authentication schemes. In other words, passwords

and other credentials, sent inside a tunnel and considered safe,

are in fact still at risk.

While current solutions are agnostic to the inner methods

and implementation environments, our analysis shows that the

applicability and effectiveness of a particular binding method

depend on the security properties of the inner authentication

method as well as the network infrastructure. Furthermore, we

show that using a fixed derivation scheme for traffic protection

keys for different types of tunneled authentications may expose

subsequent communications. Further results indicate that other

proposed countermeasures in the form of security policies are

insufficient and/or impractical in most environments. These

results are unsettling and affect widely deployed tunneled

authentication methods, such as PEAP and EAP-FAST.

In the next section, we briefly review concepts and define

terms used in the remainder of this paper. In Section III, we

introduce various binding methods, while Section IV summa-

rizes our threat model. In Sections V and VI, we analyze

the applicability and effectiveness of cryptographic binding

methods and security policies, respectively. Secure session

key derivations are discussed in Section VII. In Section VIII,

we discuss the security pitfalls of widely deployed tunneled

authentication methods. And finally, in Section IX, we draw

conclusions.
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II. REVIEW AND DEFINITIONS

This section briefly reviews tunneled authentications and

previous work.

A. Tunneled Authentications

A tunneled authentication, as depicted in Figure 1, consists

of a tunnel protocol that is executed to establish a protective

tunnel, an inner authentication method that is executed inside

the tunnel and, finally, the derivation of a master session key

that is used to derive traffic protection keys. These subroutines

are defined in the following paragraphs.

1) Tunnel protocol - A tunnel protocol is a key estab-

lishment protocol between a client and a server that

provides server authentication, mutual authentication or

no authentication (anonymous tunnel). Since this paper

focuses on client authentications inside a tunnel, we only

consider the following two options in the remainder:

a) Anonymous tunnels; or

b) Tunnels with server authentication.

In an anonymous tunnel, neither client nor server au-

thenticates to each other and authentications are exe-

cuted later on inside the tunnel. Anonymous tunnels

are sometimes used to provide privacy but can also be

used to support credential provisioning or authentication

methods not supported by the tunnel protocol.

This paper explores attacks on tunneled authentications

inside cryptographically strong tunnels, i.e., we make

the following assumptions:

• The key establishment used in the tunnel protocol

cannot be compromised through solving the under-

lying hard mathematical problem.

• In tunnels with server authentication, the client is

assured that the server authentication is bound to

the key establishment, i.e., only the client and the

server can obtain the established key.

A tunneled message is denoted as T (D1, D2, ..., Dm),
where each Di is a data field in the message. In our

analysis, we assume that every tunneled message is

encrypted and optionally its integrity is protected. Note

that TLS tunnels always provide integrity protection

and optionally encryption. In this paper, we use KT to

denote a key established by the tunnel protocol.

2) Inner authentication - An inner authentication method

provides client authentication to an inner authentication

server, which may or may not be the same server with

which the tunnel has been established (see Figure 1).

We make the following assumptions for inner authenti-

cations: 1) the long-term authentication credentials are

either a secret key Kin
auth (or a password) or a pair of

public/private keys (pkinauth, sk
in
auth), 2) public keys are

certified by a trusted third party, 3) whenever a secret

key is used, the client is authenticated by a keyed hash,

such as a message authentication code (MAC), and 4)

whenever the authentication is public key-based, the

client is authenticated by generating a digital signature.

Inner 
authentication
server

Inner authentication

Tunnel protocol

protected 
interface

Client Tunnel
server

Fig. 1. Tunneled Authentication.

We consider the following categories for tunneled client

authentications:

(a) Strong authentication & strong key establishment;

(b) Strong authentication & weak/no key establish-

ment;

(c) Weak authentication & strong key establishment;

(d) Weak authentication & weak/no key establishment.

In this paper, we refer to authentications that are based

on digital signatures or keyed hash with the required

security strength1 as strong authentications. On the other

hand, we refer to an authentication as weak authentica-
tion if the secret or private authentication credential of

a client and/or the server can be compromised when-

ever an attacker has access to the protocol exchange.

Examples of weak authentication schemes are schemes

that exchange secret credentials in the clear, are prone

to dictionary attacks or key recovery attacks [7].

Furthermore, a key establishment as part of an inner

method is referred to as strong key establishment, if an

attacker cannot obtain the established key during an on-

going session by attacking the underlying mathematical

problem of the key agreement scheme or the proto-

col itself. Unlike attacks on the authentication scheme,

attacks on the key establishment are time-bound by

the tolerated protocol delays. Conversely, an inner key

establishment is considered as weak key establishment,
if an attacker can obtain the established keys during the

ongoing session. If the inner authentication has a key

establishment, we use KIN to denote the established

key.

3) Master session key derivation - The master session key

is an output of the tunneled authentication and often

used to protect subsequent communications between the

client and another network entity, such as a wireless

access point. We denote this key as KSES and consider

the following options for its derivation:

a) KSES = f1(KT ),
b) KSES = f2(KIN ),
c) KSES = f3(KT ,KIN ),

1Please refer to NIST SP 800-57 [6] for guidelines on security strengths
of algorithms and adequate key lengths.
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Fig. 2. Original Man-in-the-Middle Attack on Tunneled Authentications [3].

where each fi is a key derivation function, i = 1, 2, 3.

In the rest of this paper, we use f to denote any key

derivation function. For each key derivation, only the

input keys to f are presented, even though other data

may also be a part of the input.

B. Previous Work

MitM attacks on tunneled authentications and authentica-

tions in anonymous tunnels have been identified in [3] and [8],

respectively. For the sake of simplicity, we review the attacks

for scenarios in which tunnel server and inner authentication

server are the same entity. The attacks, illustrated in Figure 2,

consist of the following steps:

1) An attacker executes a tunnel protocol with a tunnel

server, either by intercepting a tunnel protocol initiated

by the server with a client or by initiating a protocol

with the server pretending to be the client. Here, the

server’s certified static or authenticated ephemeral public

key pkAS is used to establish the tunnel key KT , i.e.,
the tunnel protocol provides server authentication2. As

a result, both the server and attacker obtain KT .

2) Then the attacker initiates authentication method X
with a client pretending to be an authentication server

(or waits until the client initiates such a session). The

attacker redirects the client’s responses inside the tunnel

that has been established in Step 1. From the server’s

perspective, the client authenticates to the server using

inner method X .

3) Upon a successful authentication, the master session key

KSES is derived. At this point, the protocol terminates

and the authentication server considers the client authen-

tication as successful.

The authors in [3] observed that in order to thwart the

described MitM attack, the server needs assurance that the

client is the same entity that executed both the tunnel protocol

and the inner authentication method. As a possible counter-

measure, the authors suggest deriving a compound key by

combining either the tunnel key KT with the inner key KIN ,

if available, or the tunnel key KT with the client’s long-term

inner authentication key Kin
auth. So-called explicit protocol

variants provide key confirmation of these compound keys.

2The attack also works for anonymous tunnels. In that case the server’s
anonymous public key pkanom is used to establish the tunnel.

Both methods are referred to as cryptographic binding in [3].

PEAP and EAP-FAST have both adopted the first approach

with key confirmation, i.e., combining KT and KIN . As an

alternative to cryptographic bindings, the authors in [3] suggest

enforcing a policy that prevents authentication methods that

are tunneled from being executed outside a protective tunnel.

Similarly, the authors in [8] propose a number of security

policies, including to prohibit anonymous tunnels, to thwart

the reviewed attacks.
EAP-FAST supports mutually authenticated tunnels for ses-

sion resumption which prevent MitM attacks. However, the ini-

tial full protocol execution is still at risk and, if compromised,

can compromise subsequent session resumptions as well.
In our analysis, we show the insufficiencies and practical

issues of cryptographic bindings and security policies in

thwarting MitM attacks.

III. TYPES OF CRYPTOGRAPHIC BINDINGS

We present four general methods for cryptographic bindings

in the following subsections. Cryptographic bindings can be

computed as soon as the required information is available

and need to be verified before the master session key KSES

is derived. The latter is important to prevent attackers from

computing and using KSES before a failed cryptographic

binding indicates the occurrence of an MitM attack.

A. Method A: Standard Binding
In this method, the keying material KT established through

the tunnel protocol and KIN established through the inner

authentication are combined to derive a compound key Kc,

i.e.,
Kc = f(KT ,KIN ).

For a proof of the binding, the client uses Kc to generate a

message authentication code

MAC(Kc, R),

where R can be a random factor provided by the server, a

sequence number, a time stamp or a combination of these,

and sends it to the server.
Method A is similar to one of the cryptographic bindings

with explicit authentication defined in [3] and is used in PEAP

and EAP-FAST.

B. Method B: Inner Binding
To remove the dependency with inner key establishments,

a compound key could be computed using the tunnel key KT

and the client’s long-term authentication credential Kin
auth, i.e.,

Kc = f(KT ,K
in
auth)

As in Method A, the derivation of the key needs to be

confirmed by the client.
This cryptographic binding method is similar to one of the

bindings with explicit authentication in [3] and, to the best of

our knowledge, has not been implemented yet. Instead of using

the long-term credential directly, a key derived from it could

be used in the binding to comply with the “single purpose”

principle of cryptographic keys.
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C. Method C: Inside-Out Binding

As in Method B, Method C uses the client’s long-term

authentication credential to generate a binding with the tunnel

protocol. However, instead of deriving a compound key, the

long-term credentials are used to sign the tunneled data. In

particular, if the inner authentication is public key-based, the

client’s private key skinauth is used to sign the tunneled message

T (D1, D2, ..., Dm), i.e., the proof of binding is presented as

Sig(skinauth, T (D1, D2, ..., Dm)).

On the other hand, if the inner method is secret key-based,

then the client’s long-term authentication key Kin
auth is used

to generate a MAC over T (D1, D2, ..., Dm), i.e., the proof of

binding is presented as

MAC(Kin
auth, T (D1, D2, ..., Dm)).

Here, instead of Kin
auth, a key derived from Kin

auth could be

used as the MAC key for the same reason as pointed out for

Method B.

Method C is loosely related to the channel binding mecha-

nism for EAP methods executed inside an IKEv2 tunnel [9].

However, unlike Method C, the method in [9] requires the

inner authentication to derive a key.

D. Method D: Outside-In Binding

Here, the tunnel key and the client’s long-term inner au-

thentication key are used to derive a new inner authentication

key, i.e.,
Kin−T

auth = f(Kin
auth,KT ).

The new inner authentication key Kin−T
auth is used in the inner

authentication in place of Kin
auth. Note that Kin−T

auth is an

ephemeral key that will be used only in this session.

IV. THREAT MODEL

In our analysis we consider not only the MitM attacks pro-

posed in [3] and [8], but also a new extended MitM attack that

is a modified combination of both attacks. While the original

attack relies on the fact that clients may execute inner methods

outside a protective tunnel, the extended attack exploits that

clients may accept the establishment of anonymous tunnels.

The extended MitM attack is illustrated in Figure 3 and can

be described as follows:

1) As in the original MitM attack, the attacker executes a

tunnel protocol with a tunnel server, where the server

is authenticated. The established tunnel is referred to as

tunnel 2 and is protected by tunnel key K2
T .

2) Then the attacker initiates an anonymous tunnel protocol

with the client posing as the tunnel server. Here the

attacker’s anonymous public key pkanon is used to

derive tunnel key K1
T and establish tunnel 1.

3) Now the attacker listens to all messages sent inside

one tunnel and then redirects the messages into another

tunnel, making client and server believe they share a

protective tunnel with each other.

Authentication 
Server (AS) Client Adversary 

Inner authentication
 method x

Tunnel 1: anonymous Tunnel 2: server-authenticated

Tunnel protocol (pkAS)
Tunnel protocol (pkanom)

Inner authentication
 method x

Client’s response Client’s response

Fig. 3. Extended MitM Attack.

Throughout our analysis, we consider an MitM attack on a

tunneled authentication as successful if at least one of the

following conditions holds:

• the attacker successfully impersonates a client, i.e., the

attacker can authenticate to the server as the client,

• the attacker is able to obtain session-specific confidential

information, such as session keys KSES , and use this

information to launch attacks in the same session, or

• the attacker is able to obtain confidential long-term cre-

dentials in an on-line or off-line attack that can be used

to compromise future sessions.

V. SECURITY ANALYSIS OF CRYPTOGRAPHIC BINDINGS

We now discuss the applicability and effectiveness of

the cryptographic binding methods presented in Section III.

Throughout our analysis, we distinguish between the four cate-

gories of inner authentication methods defined in Section II-A.

The analysis also covers different implementation scenarios as

well as the execution of multiple authentications within the

same tunnel. Our results are summarized in Table I.

A. Applicability and Other Constraints

An obvious limitation of Method A is that it only works for

inner methods that derive keys. On the other hand, this results

in the benefit that Method A, unlike the other binding methods,

uses only ephemeral keys for the binding computation.

Methods B and D only work for secret key-based inner

methods. Methods B and C require that the inner authenti-

cation credentials can be used by the tunneled authentication

protocol.

The implementation environment of the tunnel protocol

may not allow generating tunneled messages, signing them,

and then sending them through the tunnel. In this case, the

signatures in Method C need to be sent outside the tunnel,

which may not be feasible in some applications, e.g., when-

ever a client needs to send all data through a VPN tunnel.

Furthermore, Method C does not work for inner methods in

which inner authentication and inner key establishment are

inseparably combined, such as in password-authenticated key

establishments (e.g., [10]).

The design of Method D has two consequences: 1) it

requires the modification of the inner authentication method

contradicting one of the original design goals of tunneled
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authentications, and 2) the inner authentication method can

only be executed if a tunnel key KT is available. The second

property prevents the original MitM attack, because the inner

method needs to be executed inside a tunnel. However, the

extended MitM attack presented in Section IV still applies.

B. Strong Inner Authentication & Key Establishment

First we consider the ideal case, i.e., the inner method

provides strong authentication and strong key establishment.

This refers to inner methods of category (a) as defined in

Section II-A.

Whenever applicable (see previous subsection), all cryp-

tographic bindings methods prevent the considered MitM

attacks. Method A prevents the attacks because the attacker

cannot obtain KIN , and Methods B, C and D because the

attacker cannot get Kin
auth to compute the respective binding.

C. Strong Inner Authentication & Weak Key Establishment

We now study a less ideal case, where the client authentica-

tion is strong with weak or no key establishment. This refers

to inner methods of category (b) as defined in Section II-A

and covers protocols that are exclusively designed for entity

authentications, e.g., using a token or a personal identity

verification (PIV) card.

If the inner authentication has a weak key establishment,

then Method A is applicable. However, an MitM attacker

could break the key establishment scheme during the on-

going session, derive compound key Kc, and successfully

impersonate the client. Hence, Method A cannot prevent MitM

attacks for this category of inner methods.

Methods B, C, and D all prevent the MitM attacks, be-

cause the attacker has no access to the client’s long-term

authentication credentials Kin
auth, and, thus, cannot compute

the cryptographic binding.

D. Weak Inner Authentication & Strong Key Establishment

In this section, we analyze bindings for protocols with weak

authentication but a strong key establishment. The authors are

currently not aware of deployed protocols that fall into this

category (c).

The standard binding does not successfully prevent attacks

for inner methods of category (c). An MitM attack would

be detected due to a failure in presenting the cryptographic

bindings; however, by then the attacker could be already in

possession of the client’s long-term authentication credentials.

Methods B and C both depend on the long-term authenti-

cation credentials and thus cannot mitigate the MitM attacks.

In particular, if the credentials are weak, then the attacker

can break the cryptographic binding. In any case, the weak

authentication algorithm enables an MitM attacker to recover

the client’s authentication credential in an on-line or off-line

attack.

Applying Method D, launching the original MitM attack is

not feasible; however, an attacker could attempt an extended

MitM attack. Here, the client computes its updated authentica-

tion key Kin−T
auth = f(Kin

auth,K
1
T ), where the server computes

Kin−T
auth = f(Kin

auth,K
2
T ), which will be typically used in a

MAC to compute and verify the inner authentication data as

well as the proof of binding, respectively. The attacker knows

both K1
T and K2

T and has access to the exchanged data. Hence,

authentication schemes exchanging secrets in the clear are

broken. If the inner authentication method is weak because

Kin
auth has low entropy, then the attacker can obtain the key

in an on-line or off-line dictionary attack. On the other hand,

if the weakness is due to a weak authentication algorithm

but Kin
auth has sufficient entropy, then the attacker can only

obtain the updated authentication key Kin−T
auth through an off-

line attack on the MAC. This key Kin−T
auth is only used in the

current session. Hence, if given Kin−T
auth and KT one cannot

recover Kin
auth, then Method D prevents the attack and is a

suitable proof of binding.

E. Weak Inner Authentication & Key Establishment

Last but not least, we will discuss the worst case, where the

authentication is weak with a weak or no key establishment,

i.e., category (d) in Section II-A. Actually, this worst category

inspired the introduction of tunneled authentications and con-

stitutes the most common application. For example, some of

the EAP methods specified in the original EAP standard [11],

such as One-Time Password (OTP) and MD5-Challenge, fall

into this category. Other examples include the widely deployed

MS-CHAP v1 and v2 authentication protocols ([12], [13]) that

are vulnerable to dictionary attacks and are nowadays tunneled

using PEAP.

In this scenario, the standard binding does not provide a

proof of binding since an MitM attacker can obtain KIN and

derive the compound key Kc.

Methods B, C and D all depend on the security of long-

term authentication credential Kin
auth and, thus, for providing a

valid proof of binding it does not matter whether the inner key

establishment is strong, weak or does not exist at all. Hence,

the same discussions as in the previous subsection for inner

methods in category (c) apply. As a result, only Method D

may be able to provide a proof of binding under the conditions

listed in the previous subsection.

F. Multiple Inner Authentications

Multiple client authentication methods may be executed

concurrently or sequentially inside a tunnel, e.g., allowing

clients to provide different levels of authentication using

different sets of credentials.

In general, concurrently executed inner authentication meth-

ods are independent from each other and as such each require

individual protection by a cryptographic binding method.

Hence, the same discussions as in Sections V-B to V-E apply.

On the other hand, cryptographic bindings of sequentially

executed inner authentication methods may be combined to

a chained cryptographic binding. In particular, given n se-

quentially executed inner methods supporting the same cryp-

tographic binding, an intermediary cryptographic binding can

be computed upon the completion of each inner method i, such

that it binds all completed inner methods to the tunnel and to
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TABLE I
EFFECTIVENESS OF CRYPTOGRAPHIC BINDING METHODS FOR DIFFERENT INNER AUTHENTICATION METHODS.

Inner Authentication Method
Cryptographic Binding Category (a) Category (b) Category (c) Category (d) Limitations

Method A � X X X
Method B � � X X - secret key-based inner authentication

- re-usable long-term credentials
- not desirable for separate servers∗

Method C � � X X - sending signed tunnel data
- re-usable long-term credentials
- stand-alone authentication
- MAC variant not desirable for separate
servers∗

Method D � � � � - secret key-based inner authentication

with conditions†, with conditions†, - modification of inner method
else X else X - not desirable for separate servers∗

�: This combination of cryptographic binding method and inner authentication method resists the MitM attacks.
X: This combination of cryptographic binding method and inner authentication method does not resist all MitM attacks.
∗ See our discussion in Section V-G.
† The conditions are: Kin

auth has sufficient entropy and given Kin−T
auth and KT one cannot recover Kin

auth.

each other. Such a chained cryptographic binding has been

proposed for standard cryptographic bindings (Method A) [5],

where for inner methods that do not have a key establishment,

an all zero string is used in place of the inner key to derive

the cryptographic binding. Here the intermediary binding is

computed as intermediary compound keys

Ki
c = f(Ki−1

c ,Ki
IN ), for 0 < i ≤ n and K0

c = KT ,

where Ki
IN is the key established by the i-th inner method.

Similar chained cryptographic bindings can be designed for

the other binding Methods B/C/D.

One may intuitively assume that the security conditions for

at least some of the tunneled inner methods can be relaxed due

to the chained cryptographic binding. However, for a binding

method to prevent the considered MitM attacks on every inner

method, the properties of the inner methods are not the only

factor and are co-dependent on various implementation factors.

The problem is quite complex as we will illustrate by means

of example in the remainder of this section.

Considering the above formula, let’s suppose the first i ≤ n
inner methods do not provide strong key establishments, while

inner method i + 1 does. In this case an MitM attacker

can compute all intermediary compound keys K1
c to Ki

c, but

cannot derive any subsequent compound keys Ki+1
c to Kn

c .

What does this mean for the security of all inner methods? If

the protocol instantly verifies each intermediary cryptographic

binding upon the completion of an inner method and im-

mediately aborts after detecting a failure, attacks on weak

inner authentications and key establishments are limited to

the first i + 1 and i inner methods, respectively. Otherwise,

the authentication credentials and key establishments of every
inner method are exposed to attacks. As an alternative to

instant intermediary cryptographic binding verification, the

tunnel key KT could be replaced by compound key Kj
c

to protect the next inner method j + 1, creating a chained
compound tunnel.

From this example it can be observed that chained bindings

alone cannot help to relax the requirements on inner methods,

but in combination with several other implementation factors,

such as instant intermediary cryptographic binding verification

or chained compound tunnels, inner methods i with i > 1
could be from other categories than indicated in Table I

without compromising the overall security. However, these

implementation factors render cross-platform implementations

insecure and require a secure sequence negotiation that ensures

that the first method in a sequence is chosen according to

Table I.

G. Server Implementation Scenarios

It has been considered as one of the implementation sce-

narios for tunneled authentications that the server for the

tunnel protocol, called tunnel server, may not be the same

as the server for the inner authentication, called inner server.

Verifying cryptographic bindings requires a protected interface

between the tunnel server and the inner server, so that they can

pass the keys that are necessary for the verification to each

other (see Figure 1). While one goal of tunneled protocols

is the preservation of legacy systems, it can be observed

that most implementations supporting cryptographic bindings

require changes to the inner server, either to pass on keys to

the tunnel server or carry out the binding verification. In the

following we discuss for each binding method under which

condition the tunnel server and inner server can be separated

and which server preferably acts as the verifier3.

Verifying the standard cryptographic binding requires that

either the inner server passes the KIN to the tunnel server or

the tunnel server passes KT to the inner server. Both servers

can act as the verifier.

For verifying the cryptographic bindings of Method B,

either Kin
auth (or its derivative) or KT needs to be passed

to the respective server. However, passing Kin
auth to another

3In [3], the verifier of a standard binding is called a “binding agent”, where
the discussion was developed w.r.t. whether the binding agent should be co-
located with the inner server or tunnel server.
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server is undesirable because it is a long-term credential. Here,

the inner server should act as a verifier. On the other hand,

if a derivative of this key was used to compute the binding,

then only this ephemeral derivative key needs to be passed to

the tunnel server. In this case, the binding verification can be

performed by either server.

If Method C is used with digital signatures, then verifying

the binding includes verifying the signature over tunneled data.

This is the only case that does not require modification of the

inner server, because the tunnel server knows the tunneled

message T (D1, D2, . . . , Dn) while public key pkinauth and its

certificate are publicly available. However, if Method C is

applied with a MAC, the verifier needs access to the other

input key to derive the compound key, i.e., Kin
auth or its

derivative. For the same reasons as discussed for Method B,

the inner server should act as a verifier if Kin
auth or a key

derived from Kin
auth is required for the binding verification.

When Method D is applied, the binding must be verified

by the inner server, because it is undesirable to pass long-

term credential Kin
auth to the tunnel server. In this case, the

tunnel key KT is passed from the tunnel server to the inner

server. Since Method D requires the modification of inner

methods, the modification of the inner servers does not add

any additional burden.

VI. ANALYSIS OF CONFIGURATION POLICIES

Finally, we discuss the feasibility and effectiveness of

security policies that have been discussed as countermeasures

for MitM attacks and could be used whenever cryptographic

bindings are ineffective or impractical (see Table I).

Security policies demanding clients to execute inner meth-

ods only inside a tunnel [3] or servers not to accept anonymous

tunnels [8] do not prevent the extended MitM attack presented

in this paper. In order to prevent the original as well as the

extended MitM attacks, we derive the following configuration

policy:

• Inner authentication methods can only be executed inside

a server-authenticated protective tunnel.

If the above policy can be enforced, then the aforementioned

MitM attacks will be prevented. However, the policy needs

to be enforced by the client, because the server is unaware

of clients engaging in non-tunneled or anonymous sessions

with an attacker (see Figures 2 and 3). However, client-side

policy enforcement suffers from several difficulties. First of

all, a client device may be used inside an enterprise intranet as

well as in public environments such as airports, coffee shops,

or home offices for remote access. In the former setting, an

authentication can be executed without tunnel while in the

latter, it must be tunneled. Hence, the used authentication

methods have to allow two modes: tunneled and non-tunneled.

Furthermore, whenever a password is used for user authenti-

cation, one cannot rely on the user to distinguish whether he

is sending data through a tunnel or not. But exactly this client

capability is necessary to enforce the security policy.

In addition, anonymous tunnels are still supported by some

clients. Finally, client devices are more susceptible to attacks

TABLE II
SECURE MASTER SESSION KEY KSES DERIVATION FOR DIFFERENT

INNER AUTHENTICATION METHODS.

Key Derivation Input
Inner
Authentication KT KIN (KT ,KIN )
Method
Category (a) O � �
Category (b) O X O
Category (c) O O O
Category (d) O X O

O: This input key can be used to derive KSES in combination with a
suitable cryptographic binding method or enforced configuration policy.
�: This input key can be used to derive KSES with or without crypto-
graphic binding.
X: Using this input key to derive KSES puts communication protected
under KSES at risk of compromise.

(e.g., compared to servers) and thus an attacker could tamper

with the device to hinder the enforcement of the policy or make

the client believe that data is submitted inside a protective

tunnel, where in fact it is submitted in the clear.

VII. SECURE SESSION KEY DERIVATION

This section discusses the dependencies between the secure

derivation of master session key KSES and different inner

authentication methods with or without cryptographic binding.

Only if derived securely, KSES can be used to protect subse-

quent communications. Our results are summarized in Table II

and it can be observed that only for inner methods with strong

authentication and strong key establishment, KSES can be

securely derived from KIN or a combination of KIN and

KT if no binding method has been used. In all other cases,

the secure key derivation requires the use of a suitable binding

method. For example, without cryptographic bindings, tunnel

key KT cannot be used as the only input to derive KSES

because it is known to MitM attackers. In addition, inner keys

KIN from weak inner key establishments should never be used

to derive KSES , while keys from strong key establishments

paired with weak authentications (category (c)) cannot be

securely used as sole input because the authenticity of the

keys cannot be ensured.

We conclude that if a suitable cryptographic binding method

is applied, it is advisable to derive KSES either from both tun-

nel key KT and inner key(s) KIN or from the tunnel key KT

alone. When both inner authentication and key establishment

are strong (category (a)), KIN may be used as a sole input

to derive KSES . In case of category (c), if the weak inner

authentication is due to low entropy credentials, only when

the configuration policy in Section VI is truly enforced, KIN

can be used as the only input to derive KSES . If multiple

inner methods i are tunneled, any combination of inner keys

Ki
IN may be used to derive KSES as long as the overall key

derivation complies with the previous discussions.

VIII. SECURITY PITFALLS IN CURRENT DEPLOYMENTS

Most of the currently deployed tunneled authentications are

tunnel-based EAP methods such as EAP-TTLS [14], EAP-
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FAST [5], and PEAP [4]. Based on our findings in this

paper, we point out some security pitfalls of these tunneled

authentication protocols.

A. Standard Bindings

As we have shown in this paper, the applicability and

effectiveness of a cryptographic binding method highly depend

on the inner method executed inside the tunnel (see Table I).

However, tunnel-based EAP methods allow any type of inner

method to be tunneled, while either applying the standard

cryptographic binding (EAP-FAST and PEAP) or no binding

at all (EAP-TTLS). Obviously, without any binding, MitM

attacks are feasible unless other countermeasures are applied

(see next subsection). On the other hand, as demonstrated in

this paper, using the standard cryptographic binding can only

protect inner methods with strong authentication and strong

key establishment. However, such methods are an exception.

For example, commonly tunneled client authentication proto-

cols are MS-CHAP v1 and v2, that are, when not tunneled,

prone to dictionary attacks and fall into our category (d)

of inner authentication methods. These and any other inner

methods without key establishment lead to the computation

of a trivial compound key Kc. In particular in EAP-FAST

and PEAP, KIN is replaced with a zero string resulting in a

cryptographic binding that cannot serve as a proof of binding

and, thus, cannot mitigate MitM attacks.

In addition, EAP supports the execution of multiple inner

methods and we showed in Section V-F that chained crypto-

graphic bindings as implemented in EAP-FAST only protect

against MitM attackers if every inner method provides strong

authentication and strong key establishment or several other

security techniques are in place such as instant intermedi-

ary cryptographic binding verification or chained compound

tunnels. However, such additional security measures are not

specified in the EAP framework or EAP-FAST.

B. Client-Enforced Security Policies

With the standard cryptographic binding applied by EAP-

FAST and PEAP only preventing the known attacks in a

few rare applications, the enforcement of the configuration

policy derived in Section VI becomes crucial. However, the

proposed policy is difficult to enforce in networks using

EAP for tunneled authentications, because EAP specifies that

inner methods should not be modified. Without modifications,

existing authentication methods cannot be aware of whether

they are executed inside a tunnel or not, because they cannot

process any input from the tunnel protocol. Furthermore,

unmodified existing methods do not output binding-related

information. As a result, the correct enforcement of the policy

cannot be verified by the tunneled authentication protocol itself

and must be ensured by the client alone outside of the protocol

execution. This is difficult to ensure for the reasons discussed

in Section VI.

Note that TLS, the tunnel protocol used by tunnel-based

EAP methods, supports anonymous tunnels, enabling the ex-

tended MitM attack presented in this paper and violating the

configuration policy.

IX. CONCLUSIONS

This paper reveals the inconvenient truth about tunnels used

to protect client authentications, namely that currently used

tunneling methods are at risk to MitM attacks. None of the

analyzed cryptographic binding methods is able to prevent

MitM attacks on tunneled legacy password authentication

schemes. In fact, the current standard binding only prevents

attacks on tunneled methods providing strong authentication

and strong key establishment.
Our results also indicate that the identified pitfalls of current

deployments won’t be easy to address. A secure deployment

of tunneled authentications needs to implement the right

combination of cryptographic bindings, traffic key derivations

and configuration policies based on the tunneled methods.

However, while the presented binding method D is the most

effective one w.r.t. different categories of inner methods, it has

the most implementation limitations making it impractical in

many settings. In fact, method D could not be used in EAP

methods without breaking existing implementations. In further

results we showed that client-enforced policies that could

prevent MitM attacks whenever cryptographic bindings fail

are impractical in many environments. Concluding, tunneling

weak client authentication methods is and likely remains an

insecure practice, further emphasizing the need to ultimately

replace legacy authentication methods with cryptographically

stronger methods.
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