Advanced x86:
Virtualization with VT-x
Part 3

David Weinstein
dweinst@insitusec.com

All materials are licensed under a Creative
Commons “Share Alike” license.

* http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the wark

to Remix — to adapt the work

®E

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the

author or licensor (but not in any way that suggests that they endaorse you ar
yvour use of the work).

Share Alike — If you alter, transform, ar build upon this woaork, you may

distribute the resulting work anly under the same, similar or a compatible
license.

© ®

Real mode guest VM

What if we wanted to run some real mode code as a guest VM.

— Maybe because support for Virtual-8086 emulation is unsupported by
the CPU’s compatibility mode in 64-bit mode

Allan Cruse (Prof. Emeritus @ University of San Francisco) shows
us how to do this with a guest VM

— http://www.cs.usfca.edu/~cruse/cs686s07/lesson24.ppt

So | fixed the code to work with recent Linux 3.* kernels

We’'ll get to experience the fun of calling a BIOS interrupt in a
guest VM container ©

— In the comfort of our Linux environment

The Real Mode Address Space

* Code that uses real-mod addresses is limited
to the bottom megabyte of memory:

OxFFFFF
t ROM
ROM
VRAM
one-megabyte EBDA

address-space

RBDA

0x00000 VT

Read-Only Memory (BIOS)

+«— Read-Only Memory (Video)
« Video display memory

«—— Extended BIOS Data Area

« ROM-BIOS Data Area
«—— Interrupt-Vector Table

Ref: http://www.cs.usfca.edu/~cruse/cs686s07/lesson24.ppt

5

http://www.cs.usfca.edu/~cruse/cs686s07/lesson24.ppt
http://www.cs.usfca.edu/~cruse/cs686s07/lesson24.ppt
http://www.cs.usfca.edu/~cruse/cs686s07/lesson24.ppt

Real mode guests... for reals

* To support guest real-mode execution, the
VMM may establish a simple flat page table
for guest linear to host physical address

mapping.

BIOS Services

int Ox10: video display services

int Ox11: equipment-list service

int Ox12: memory-size service

int Ox13: disk input/output services

int 0x14: serial communications services
int Ox15: system software services

More on BIOS stuff
http://wiki.osdev.org/BIOS

Int Ox11: Equipment List result

1514 13 12 1 10 9 8 7 6 5 4 3 2 1 0

ax

T A A A A A A

Internal modem
(1=yes, 0=no)
Number of printer-ports

Number of serial-ports

Number of diskette drives (if bit O is set)
(00=1 drive, 01=2 drives, etc)

Initial video-display mode (11=80x25 monochrome,
10=80x25 color, 01=40x25 color, 00=EGA/VGA/SVGA)

PS/2-type pointing-device is installed (1=yes, 0=no)

External math-coprocessor installed (1=yes, 0=no)

Diskette available for booting (1=yes, 0=no)

linuxvmm.c

Character-mode Linux device-driver

— Loaded as a kernel module at runtime
Accessed via a /dev/vmm

Can use standard functions like fopen, mmap,
and ioctl to interact with the device

Compile with included mmake.cpp

— g++ -0 mmake mmake.cpp

Read the README file in the linuxvmm directory

tryoutpc.cpp

* Uses an ioctl on the /dev/vmm

— Ask the host VMM to continue to execute the
kernel’s code in 64-bit mode, and to launch a
Guest VM that will execute the real-mode
procedure in Virtual-8086 mode

— We'll supply the register values to be placed in the
guest VM as part of the ioctl.

— And we’ll see the result when the guest exits and
returns the resulting register values.

dram.c

* Another kernel module to allow us to browse
the physical memory of the system

— Exposed via /dev/dram

— Best viewed with fileview (in linuxvmm dir)

— g++ -0 fileview fileview.cpp

— sudo ./fileview /dev/dram

Lab: ‘real-mode’ guest VM container

* Purpose

— Demonstrate execution of a real-mode guest

— Execute BIOS interrupt Ox11 to obtain the
available system device hardware

* Steps
— README in directory

VM “Introspection” (1)

* By registering with the VMCS events that cause VMEXxits, the
transition from VMX non-root to root mode allows the
inspection of guest state and memory, thus allowing the
external inspection of the guest.

* We've discussed a number of events that can trigger a VM
exit and allow for inspection of the guest system’s state

 We've also shown how we can essentially create callbacks
that get hit when the VM exit conditions match an event of
interest

VM “Introspection” (2)

* Since the CR3 register contains the page
directory pointer during a context switch (and
thus VM Exit), this can be used to identify the
upcoming process before it executes.

* At the end of the day, this is a tool that can be
used for malware analysis, system integrity
checking, code isolation, etc.

General Hardware VM Based Rootkit

Virtual Machine Based Rootkit (VMBR)
Start with CPL=0

Allocate some unpaged physical memory

— Ensure no linear mappings to VMM after guest entry
Move running OS into VMCS
Intercept access to hardware (10 ports, ...)

Communicate to hardware VM rootkit via sentinel
instructions

Keylogging in VMBR

* Setup VMCS appropriately
— Determine the keyboard’s 10 ports

— Intercept |0 port access and handle/reinject the event to the guest
VM.

* Look up the lab Xeno made for talking to the keyboard
controller

— http://opensecuritytraining.info/IntermediateX86.html

* Another example, see Hyperdbg

— https://code.google.com/p/hyperdbg/source/browse/trunk/hyperd
bg/keyboard.c

Microsoft YWindows [Uersion 6.0.6801]
Copyright (c¢)> 2006 Microcoft Corporation. All rights reserved.

C:“Users“Admninistrator>cd D
The system cannot find the path specified.

C:\zersAdninistrator>cd Desktap

C:llsersidministrator~Desktop>bpknock.exe Bxbahecafe
eax Bx6969676F

ebhx BxYefdeddn

ecx Bx2H

edx Ax6269696%

knock answer: Bx69696769

C: llsers*"Administrator‘Desktop>bpknock.exe Bx11111111
eax BxV280202

a
¥l

knock answer: Bx72882802

C:“sers™Hdministrator~Desktop>

bpknock

38 int __cdecl main{int argc, char **argv) {

x| ULONG3Z2 knock;

32 i1f (argc = 23 {

33 printf ("bpknock <magic knock=“n");
34 return B8;

35 }

36 knock = strtoul (argv[1l], @, @);

37

38 _try {

39 printf ("knock answer: %#.n", NBPCall (knock));
4 } __except (EXCEPTION_EXECUTE_HAMNDLER) {
41 printf ("CPUDID caused exception");
42 return @;

43 }

A4

45 return @;

46

47 }

A bpknock. cpp

based on joanna rutkowska's bpknock (bluepill knock)
this wutility communicates to the WM vig calls to CPUID
{(which can be run in ring 3)

S

#include <stdio.h>

#include <stdlib.h=>

#include <windows.h>
Stypedef unsigned int ULONG3Z;

ULONG3Z
__declspec(naked) *<- indicates no compiler generated prologsepilog */
NMEPCall (ULOMNG3Z2 knock) {

SbkNahrbREREBomwounawme

__asm {
push ebp
mov ebp, esp
push ebx
push ecx
push edx
21 cpuid
22 pop edx
23 pop ecx
24 pop ebx
25 mo esp, ebp
26 pop ebp
27 ret
28 }

29 |}

Blue Pill Idea (Simplified)

: v
Native Operating | | PROC bluepill |
H L]

System

[enable SVM]

¥

[prepare VMCB |

1----3:--

| CALL bluepill f-rrerreemserereee’ b '
0 . Yy __ VMCB
' ' ¢= === % VMRUN &« ! |
' [] []
1 '] (]
' i ' ' Blue PFill
: - - - Hypervisor
, : . ¥
' : : | check i
- ' ' _VMCB.exitcode)
- ; . - only during
: : .~ ------- -‘ firSt EE"
' ' RET from bluepill PROC,
: : never reached in host mode,
' : only executed once in guest
' mode
v '
. .

Mative Operating System continues to execute,

but inside Virtual Machine this time...
source: J. Rutkowska, Black Hat USA 2008, © Black Hat

Vitriol
BH USA 2007. Goldsmith and Lawson
(1) get to cpl0
(2) check cpuid, feature msr for VMX
(3) allocate vmx and vmces from I0Malloc

(4) initialize vmces, call vmclear

(5) copy segments, stack, cr3 to vmcs host and
guest

(6) set host(/root/hypervisor) eip to trap handler
(7) set exec controls to pick events we want

Virtualization projects

Lguest, Xen, QEMU/KVM
Vitriol (Matasano), BluePill/NewBluePill (ITL)

Debugging
— Hyperdbg, virtdbg

Academic

— SubVirt (Microsoft Research), V3vee Palacios
(NWU), SecVisor (CMU), BitVisor (University of
Tsukuba)

NewBluePill

* Created for a Black Hat training session

* Copyright terms are limiting (reproduced
oelow)

* https://bluepillstudy.googlecode.com/svn
/trunk/nbp-0.32-public/

; Copyright holder: Invisible Things Lab

; This software is protected by domestic and International
; copyright laws. Any use (including publishing and

; distribution) of this software requires a valid license

; from the copyright holder.

; This software is provided for the educational use only
; during the Black Hat training. This software should not
; be used on production systems.

http://opensecuritytraining.info/IntermediateX86.html
http://opensecuritytraining.info/IntermediateX86.html
http://opensecuritytraining.info/IntermediateX86.html

Lguest

* Simple x86 hypervisor for hosting other Linux
cernels

* Load kernel module which you will load into
running kernel

* Simple I/O for communication

Detecting Virtualization/VMBRs

* Godsmith, Lawson proposed detection heuristics [1]
— Functional (behavior or state changes)
— Side-channel (timing variations)
* Point methods
— Processor errata
— VMCall functions/CPUID results
— Look for artifacts in processes, file system, and/or registry, memory.
— Look for specific virtual hardware
— Look for specific processor instructions and capabilities
* See RedPill, NoPill, and ScoopyNG
— ScoopyNG = Scoopy Doo + Jerry

[1] http://www.matasano.com/research/bh-usa-07-ptacek_goldsmith _and_lawson.pdf

Instructions That Cause VM Exits
Unconditionally

* CPUID, GETSEC, INVD, and XSETBV. This is also
true of instructions

* introduced with VMX, which include: INVEPT,
INVVPID, VMCALL,5 VMCLEAR, VMLAUNCH,
VMPTRLD, VMPTRST, VMREAD, VMRESUME,
VMWRITE, VMXOFF, and VMXON.

* Meaning there should be a timing difference
caused by a VM exit

Instructions That Cause VM Exits
Conditionally

* |f you can figure out whether the software
trying to escape detection will be forced to
exit to support a particular pre-existing
feature

* Section 25.1.3

RedPill

* Joanna Rutkowska, 2004 - “Red Pill... or how to detect
VMM using (almost) one CPU instruction”

— http://www.invisiblethings.org/papers/redpill.html

* Using SIDT (Store Interrupt Descriptor Table Register)
instruction to profile the current value in the IDTR

* She had found that the most significant byte of the IDTR
had a predictable value in VMWare 4 and VirtualPC,
which was different from what it was in an non-
virtualized system

Ref: http://opensecuritytraining.info/IntermediateX86.html

Measuring time (1)

* CPU Tick Counter
— RDTSC instruction
— resolution: number of processor cycles (super high!)

— very accurate, but trivial to cheat!

— TSC offsetting/RDTSC VMEXit

* High Precision Event Timer (HPET) and other local timers
— Might have a high resolution
— But we can cheat them

— e.g. interrupt interception
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf (Slide 54)

Measuring time (2)

* Real Time Clock (RTC)
— |/O with RTC device
— resolution: milliseconds (poor)

— relatively easy to cheat (I/O interceptions)

* External clock
— e.g. NTP protocol
— resolution: 10 milliseconds (very poor)

— can not be cheated using generic approach — only attacks
against specific implementation

http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf (Slide 54)

https://bluepillstudy.googlecode.com/svn/trunk/nbp-0.32-public/
https://bluepillstudy.googlecode.com/svn/trunk/nbp-0.32-public/
https://bluepillstudy.googlecode.com/svn/trunk/nbp-0.32-public/
https://bluepillstudy.googlecode.com/svn/trunk/nbp-0.32-public/
https://bluepillstudy.googlecode.com/svn/trunk/nbp-0.32-public/

TLB Profiling

* Based on the belief that a VMM puts the hardware
TLB entries to O if it is intercepting an instruction.

* Technique

— Detector can watch timing access of a page, calling a
possibly intercepted instruction, and then once again
timing access to the same page

— Comparing both results should indicate a longer access
time (from an external reference) if there has been an
interception.

Volatile Memory Capture over DMA

* Access all of physical memory over external
peripheral interface (e.g. Firewire)

* |t should then be possible to detect a VMBR
by searching for its signature.

— What signatures would you look for having

learned what we know about the various data
structures?

BlueChicken/TOCTOU

It's a funny feature that allows Blue Pill to defeat timing-
based virtualization detectors, so they can't find out that
they're inside a VM. Obviously we do not need Blue Chicken
in case there is Virtual PC in the system or any other
application that makes use of hardware virtualization
already.” -Joanna Rutkowska

e

* Blue Chicken puts Blue Pill into a mode where it doesn’t
interfere or cause VM exits. This sleep mode means it doesn’t
hook anything and could remain in memory encrypted to
avoid detection.

* This is an example of a Time of Check Time of Use attack
designed to protect Blue Pill from detection.

Nested Virtualization

Ben-Yehuda et al. The Turtles Project: Design and Implementation of Nested
Virtualization

— Talk: http://www.voutube.com/watch?v=FbH63kVGTek

— “... our approach multiplexes multiple levels of virtualization ... on the single level of architectural
support available”

Alexander Tereshkin (ITL), Bluepilling the Xen Hypervisor

Other uses

— laas providers

— Live Migration

— Debugging hypervisors

“Nested virtualization is needed in case we have some other applications in the target
system that also want to make use of virtualization (e.g. Virtual PC 2007) or we have a
system with built-in hypervisor. In both cases Blue Pill must run those applications
and/or OS' own hypervisor as nested ones.” - Rutkowska

Cheat Engine

“Cheat Engine is an open source tool designed to help you with
modifying single player games running under window so you can
make them harder or easier depending on your preference(e.g:
Find that 100hp is too easy, try playing a game with a max of 1
HP), but also contains other usefull tools to help debugging games
and even normal applications.”

Implements a VMM along the way © (DBVM)
— SC2/D3 hax?

http://cheatengine.org/aboutce.php

https://code.google.com/p/cheat-engine/

http://www.invisiblethings.org/papers/redpill.html

SubVirt Rootkit

* Wang et al. SubVirt: Implementing malware
with virtual machines

— Microsoft research

— Proof of concept against Windows XP and Gentoo
Linux

— On Windows it implants itself during system shutdown
event (using LastChanceShutdownNotification event
handler) so that it will load on next boot.

— On Linux they modify init.d (rc.d?) scripts to load their
VMBR on next boot.

Azure

* “Named after the rootkit that relies on similar principles for its
operation, Azure is a proof-of-concept malware analysis tool for
Windows XP-based guests that functions externally through the
use of Intel VT. It was implemented using KVM (a Linux-based
virtualization solution) as a base.”

* “Azure uses virtual machine introspection to identify a target
process and fine-grained tracing to monitor its behavior; coarse-
grained tracing is left as future work.”

— https://code.google.com/p/azurema/

http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf

Some old and new VMM Bugs

* VMMs are non-trivial to write
— Microsoft Virtual Server 2005 R2, CVE-2007-0948
— CVE-2006-5379, Nvidia vulnerability

— Webpage visit -> Guest to Host Ring0
— VMWare ESX 3.0.1, CVE-2007-4496
— Xen 3.0.3, CVE-2007-4993

— CVE-2012-1516, VMWare ESXi 4.1 RPC events, arbitrary code
execution.

— Intel SYSRET privilege escalation, CVE-2012-0217

— http://blog.xen.org/index.php/2012/06/13/the-intel-sysret-privilege-
escalation/

http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf

End

	Slide 1
	Slide 2
	Real mode guest VM
	The Real Mode Address Space
	Real mode guests… for reals
	BIOS Services
	Int 0x11: Equipment List result
	linuxvmm.c
	tryoutpc.cpp
	dram.c
	Lab: ‘real-mode’ guest VM container
	VM “Introspection” (1)
	VM “Introspection” (2)
	General Hardware VM Based Rootkit
	Keylogging in VMBR
	bpknock
	bpknock
	bpknock
	Blue Pill Idea (Simplified)
	Vitriol
	Virtualization projects
	NewBluePill
	Lguest
	Detecting Virtualization/VMBRs
	Instructions That Cause VM Exits Unconditionally
	Instructions That Cause VM Exits Conditionally
	RedPill
	Measuring time (1)
	Measuring time (2)
	TLB Profiling
	Volatile Memory Capture over DMA
	BlueChicken/TOCTOU
	Nested Virtualization
	Cheat Engine
	SubVirt Rootkit
	Azure
	Some old and new VMM Bugs
	End

