
Rootkit Pre-Class Writeup

1 Primary Tools Used

The following tools were primarily used to locate and identify various malware located on the given virtual
machine:

• GMER 1.0.15.15570. GMER is a tool that scans for rootkits using common techniques, such SSDT
or IRP hooking. It also has the ability to identify hidden files and, optionally, copy them to an unhidden
location for further analysis.

• Volatility 1.4-rc1. Volatility is a memory forensics framework that scans a memory image for various
objects, such as loaded modules, socket connections, etc. For simplicity, I just used the .vmem file from
the given virtual machine image as input to Volatility. In a non-virtualized environment, forcing a
crash dump or using a a tool such as Win32dd.exe from Moonsols or LiveKd.exe from Sysinternals
could be used to create the memory image.

• psservice.exe. This tool from Sysinternals lists details about currently installed Windows system
services, such as their names, descriptions and current status.

• strings.exe. This tool, also from Sysinternals, scans a binary for ASCII or Unicode strings of some
given minimum length and displays them. It can be useful for quickly identifying the rootkit to which
a binary file belongs.

• listdlls.exe Displays DLLs loaded for a particular process.

• handle.exe Displays open handles owned by a particular process.

Another technique that was easy and somewhat useful was simply looking at file modification times
of .sys files located in C:\WINDOWS\system32\drivers. If a driver has a modification date significantly
different than the rest of the drivers in that directory (e.g. sysenter.sys), then it might be worth looking
into further. Of course, crafty rootkits can (and did) prevent files from being visible in Windows Explorer,
so this certainly isn’t an exhaustive approach. IDA Pro was also used as a last resort to analyze binary files
extracted from the virtual machine’s memory image that couldn’t be identified via easier methods.

2 Identified Malicious Rootkits

2.1 Vanquish Autoloader v0.2.1

Perhaps the most easily visible rootkit is the Vanquish v0.2.1 rootkit. It is installed as a service and can
be viewed via Windows’s system services management console (services.msc) or by sifting through the
output of Sysinternals’s psservice command. Since Vanquish is installed as a system service, Windows
will automatically execute C:\WINDOWS\vanquish.exe every time the system starts up. Convienently, the
system also contains the folder C:\vanquish-0.2.1, which contains additional information on the rootkit’s
capabilities.

1

In particular, the rootkit attempts to inject vanquish.dll into certain processes on the system and
modify their IAT to intercept calls to certain system functions related to the registry (e.g., RegEnumKey*),
service listings (e.g., EnumServicesStatus*), and user authentication (e.g., LogonUser*). The rootkit will
use this capability to capture usernames and passwords containing the magic string “vanquish”, hide certain
files and folders, and prevent deletion of files or folders that start with the string “D:\MY” by injected
processes.If we look at C:\vanquish.log, we see that the rootkit claims to have successfully injected itself
into winlogon.exe. We can confirm this by using Volatility to dump the loaded DLLs for winlogon.exe
(PID 720) and analyzing the outputted DLLs:

>python vol.py dlllist -p 720 -f "rootkitclassvm.vmem"
winlogon.exe pid: 720
Command line : winlogon.exe
Service Pack 3

Base Size Path
0x01000000 0x081000 \??\C:\WINDOWS\system32\winlogon.exe
0x7c900000 0x0b2000 C:\WINDOWS\system32\ntdll.dll

...
0x01480000 0x00c000
0x014f0000 0x00c000
0x01520000 0x00c000

...

> python vol.py dlldump -p 720 --dump-dir=. -f "rootkitclassvm.vmem"
...

Dumping , Process: winlogon.exe, Base: 1480000 output: module.720.1f2fbe0.1480000.dll
Dumping , Process: winlogon.exe, Base: 14f0000 output: module.720.1f2fbe0.14f0000.dll
Dumping , Process: winlogon.exe, Base: 1520000 output: module.720.1f2fbe0.1520000.dll
...

> strings.exe module.720.1f2fbe0.1480000.dll
...
Vanquish DLL v0.2.1
...

2.2 HackerDefender 1.0.0

Slightly less obvious than the Vanquish rootkit was the HackerDefender 1.0.0 (or 100?) rootkit. Rather than
injecting itself as a DLL into certain processes, HackerDefender (or HxDef for short) is installed as both
a kernel-mode driver (hxdefdrv.sys) and a hidden system service (hxdef100.exe). The rootkit will hide
all files, folders and processes starting with the string “hxdef”, so I used GMER to view the hidden files
and copy their contents to a renamed, non-hidden directory. A list of hooked functions is also given in the
hidden documentation directory. User-land code can communicate with the driver by issuing IOCTls to the
\\.\HxDefDriver device. The rootkit also opens a mailslot for IPC with a semi-randomly generated name.
For example, again using Volatility and the files plugin, we can see the HxDef service has open handles to
\hxdef-rk100s6825727F.

HxDef is configured on this machine to run taskmgr.exe on system startup, but the configuration file
(hxdef100.ini) could be modified to just as easily run netcat or something executable. When checking the
running processes via Windows Task Manager, there appeared to be two taskmgr.exe processes executing:
one running under the “Student” user account and another under the “SYSTEM” account, the latter of
which was launched by HxDef.

The rootkit also includes a backdoor component that doesn’t open up any ports of its own, but rather
intercepts all incoming network traffic and looks for a “magic” password-based packet of a fixed length.
Thus, if any service has an open port (e.g., port 135 on this VM), an attacker can use the bdcli100.exe

2

executable to connect remotely to the machine with the default password hxdef-rulez. For example, the
following command will pop open a shell on the VM:

bdcli100.exe 127.0.0.1 135 hxdef-rulez

2.3 FUTo

GMER also located an additional hidden file, C:\WINDOWS\system32\drivers\fu.exe. Copying the hidden
fu.exe to a new folder, renaming it and running the strings.exe tool from Sysinternals on the executable
yields a few interesting entries in the resulting output. In particular, we find a reference to the .pdb file
generated by Visual C++ when compiling the binary:

c:\Documents and Settings\user\Desktop\FUTo_enhanced\FUTo\fu\Debug\fu.pdb

From this string and the hidden fu.exe binary, we can reasonably assume the system is infected with
the FUTo rootkit, which is an updated version of the FU rootkit. Perhaps more usefully, we can even find
the command-line options for the program without disassembly or attempting to run the executable directly.
The available options are:

Usage: fu
[-ph] \#PID to hide the process with \#PID
[-phng] \#PID to hide the process with \#PID. The process must not have a GUI
[-phd] DRIVER_NAME to hide the named driver
[-pas] \#PID to set the AUTH_ID to SYSTEM on process \#PID
[-prl] to list the available privileges
[-prs] \#PID \#privilege_name to set privileges on process \#PID
[-pss] \#PID \#account_name to add \#account_name SID to process \#PID token

This rootkit also has a kernel-mode driver (msdirectx.sys, which can receive IOCTLs from fu.exe to
the \Device\msdirectx device. The kernel-mode driver also contains the following string, which further
suggests the msdirectx.sys drive is from the FUTo rootkit:

c:\futo_enhanced\futo\exe\i386\msdirectx.pdb

The driver file is apparently named such in an attempt to confuse it with Microsoft’s DirectX graphics
API. The IOCTL sent to the KMD depends on the command-line switch given to fu.exe, and each feature
is implemented in the driver using Direct Kernel Object Manipulation (DKOM).

2.4 Shadow Walker

The system has another suspcious driver installed related to the FU rootkit called mmpc.sys, located in
the C:\Windows\System32\Drivers. Running strings.exe on the binary again yields another interesting
reference to a .pdb file:

c:\shadowwalker_corey\BINi386\mmpc.pdb

Shadow Walker is a proof-of-concept feature added to the FU rootkit above that attempts to control an
application’s view of the system memory. It does so by hooking the 0x0E (page fault) interrupt in the IDT.
The rootkit installs a new page fault handler and filter read, write and execute access to hooked pages.

We can find confirm that mmpc.sys has hooked the 0x0E interrupt again using Volatility to dump the
IDT from the memory image:

3

... ...
13 ntoskrnl.exe!0x8053fd90
14 0xf8bf2816
15 ntoskrnl.exe!0x805407c8
... ...

The address 0xf8bf2816 for interrupt 0x0E (14) corresponds to the mmpc.sys driver:

Start Size Service key Name
0xf8bf2000 6144 ’mmpc’ ’mmpc’ ’\\Driver\\mmpc’

The driver also opens a \Device\mmHook device, which can receive IOCTLs from user-mode applications
via DeviceIOControl.

2.5 Other Kernel-mode Drivers

The system also has the following interesting kernel-mode drivers installed (each of the drivers is located in
the C:\Windows\System32\drivers directory):

• Ctr12Cap.sys This kernel mode driver is apparently named to attempt to trick a casual observer into
confusing it with Ctrl2cap.sys, which is a legitimate driver from Sysinternals that intercepts caps-
lock characters and converts them to control characters for people who suck at typing. This driver
instead hooks the SSDT to intercept calls to the system function ZwQueryDirectoryFile, which will
let the driver effectively hide directories or files matching a certain pattern. In this case, the magic
string appears to be “ cool ”, based on an analysis of the output from strings.exe. I then created
a file called cool .txt and verified that it was not visible in Windows Explorer. The file was still
visible in GMER, however.

• BASIC.sys The most interesting string in this driver’s binary file is:

z:\binarytransfer\rootkits___installed\basic_callgate\callgate_driver\objfre_wxp_x86\i386\BASIC.pdb

The phrase “callgate” in the .pdb path suggests that this particular driver adds a new call-gate
descriptor to the Windows global descriptor table (GDT). Doing so would allow code running at a less
privileged level to call functions at a higher privilege level (e.g., ring0).

• sysenter.sys This driver hooks the SYSENTER instruction, which switches from user-mode to kernel-
mode using three machine-specific registers (MSRs). The SYSENTER hook in this driver doesn’t appear
to do anything malicious and simply calls the original KiFastCallEntry function from the hook.

• BreakOnThruToTheOtherSide.sys This Doors-referencing driver doesn’t appear to do much ex-
cept print some debug statements regarding the current value of several registers. Though, it does
seem to be from Xeno’s Intermediate x86 class:

c:\intermediatex86code\breakonthrutotheotherside\i386\BreakOnThruToTheOtherSide.pdb

The BreakOnThruToTheOtherSide service is not visible within services.msc, but one can still man-
ually query, start, stop and remove it from the command line. For example, running sc stop
BreakOnThruToTheOtherSide will display “Goodbye Kernel! I left things the way I found them :)” in
DebugView.

4

• azdow88m.sys The driver azdow88m.sys is also currently installed on the system. It creates the
following two device paths:

\Device\Scsi\azdow88m1
\Device\Scsi\azdow88m1Port2Path0Target0Lun0

Unfortunately, it’s not clear to me what this driver actually does. The driver appears to be hidden,
since it doesn’t show up in Windows Explorer. Instead, I extracted the binary from the memory image
using Volatility and opened the resulting file in IDA Pro, but didn’t have time to do much analysis on
it. Perhaps it’s related to the Daemon Tools software running in the system tray, due to the presence
of dtpro.pdb in the binary?

3 Other “Rootkits”

While not necessarily malicious, the system also contained other software described in this section that
utilizes techniques not unlike the rootkits from the previous section.

3.1 Trusteer Rapport

Trusteer Rapport is an attempt at an anti-phishing solution from Trusteer, Ltd., that is starting to be
recommended by more banks to their customers. The software installs aRapportMgmtService system ser-
vice and associated kernel-mode drivers RapportPG.sys, RapportCerberus 23645, and RapportKELL. The
kernel-mode drivers use SSDT hooking to intercept calls to several system functions, such as ZwCreateFile,
ZwDeleteKey, etc.

3.2 ZoneAlarm

ZoneAlarm is a common software firewall application for Windows. The software has system services for
a “ZoneAlarm Toolbar” (IswSvc) and “True Vector Internet monitor” (vsmon). It installs the vsdatant.sys
driver that uses SSDT hooking to intercept many other system calls, such as ZwCreatePort, ZwConnnectPort,
ZwSecureConnectPort, etc. It also uses IAT hooking to intercept calls to many functions from NDIS.sys,
such as NdisOpenAdapter, NdisCloseAdapter, etc. Based on GMER’s output, ZoneAlarm also appears to
use inline hooking to detour calls to many user-land APIs, such as ws2 32.dll!WSARecv, kernel32.dll!ReadFile,
among many others.

5

