Intro to PCAP

Reid Gilman

Approved for Public Release: 13-0979. Distribution Unlimited

Creative Commons

This presentation is licensed under a

Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
license

This Is Not A Networking Class

It is about problem solving

Goals

1. Teach problem solving strategies using
network analysis examples

Demystify the fundamentals
Know your tools

Syllabus

Day1

. Why PCAP?

. Collection Techniques
. PCAP Storage

. Berkeley Packet Filter
. Connectivity Problems
. Lunch

HTTP

. Chopshop

0N UVA WN R

Day 2

1.

2.
3.
4

Unknown Protocols
DNS

Lunch

Final Exercise

WHY PCAP?

(a.k.a. Who Cares?)

What Is PCAP?

* PCAP == Packet Capture

* Complete record of network activity
— Layers 2 -7

* Most common format is Libpcap
— Open-source
— Available on *nix and Windows
— Clibrary, bindings in many languages
— Others proprietary formats not covered

libpcap: http://www.tcpdump.org/

Pop Quiz!

Who Remembers The OSI Model?

e Application
* Presentation

e Session

* Transport

e Network

e Data Link

= N W bk 0o

¢ Physical

Some discussion questions to make sure that students are all at a reasonable level:
1. What are some examples of protocols at each layer?

1.

4.

5.

FDDI, token ring, Ethernet, 802.11 (actual sending of bits over wires or
radio)

Ethernet (spans two layers) (frames, MAC, physical addresses)

IPv4 and IPv6 (this is the level routers operate at; adds routing and logical
addressing and fragmentation)

TCP, UDP, IPSec (reliable delivery, flow control, congestion management)
5-7 are sort of fuzzy and the differences aren’t germane to this class

2. What is the difference between TCP and UDP?

3. Whatis tunneling? What restrictions exist with regards to tunneling at each
layer? Can you tunnel Ethernet over HTTP (sure)? Can you tunnel IP over
Ethernet over HTTP over FTP? Sure, but why?

4. How does TCP work?

1.
2.
3.

What is a three-way handshake?
What is a sequence number?
Acknowledgement number?

4. Does TCP provide reliable delivery?
5. How does UDP work?

1.
2.

Does it provide reliable delivery?
When might you want to use UDP over TCP?

Use Cases

* Identify rogue DHCP servers

Search for evidence of malware activity
— “malicious traffic”

Follow insider threat’s footsteps
Audit bandwidth usage

Passive DNS resolution

Monitor intrusions

Test research hypothesis

Who Uses PCAP?

* Researchers: access to raw data

* Administrators: debug network problems
* Analysts: characterize malware activity

* Incident Responders: follow malware

Youl!

10

Collecting PCAP

Wireshark
tcpdump
/ = -
|

.........

Inline Device

Do you collect the same information capturing at different locations on the network?
Why or why not?

- Generally no. The contents of a TCP stream might not change but physical
(layer 2) traffic will change at each Ethernet hop. NAT can also give a radically
different perspective upstream vs. behind the NAT. There is substantial information

loss.

Fair Warning

* Any plaintext protocol will be visible
e Careful what you log in to
* You'll be surprised what uses plaintext

12

Exercise

Use Wireshark and tcpdump to capture traffic
while you ping google.com. What is in the
ICMP Echo Request payload?

Both tools installed in your VM
* “ping google.com”

You will need to read the tcpdump man page

“man tcpdump”

Do it with tcpdump as a class but don’t show -X, then let them go

- Talk about snaplen
- Talk about —n and when you might want to use it

13:01:55.993329 1P 173.194.43.9 > 172.16.191.136: ICMP echo reply, id 27608, seq
357, length 64

0x0000: 000c 295c 00be 0050 56f4 b5eb 0800 4500 ..)\...PV.....E.

0x0010: 0054 f70a 0000 8001 ff39 adc2 2b09 ac10 .T....... 9..+...

0x0020: bf88 0000 ac83 6bd8 0165 435b fc50 0000 k..eC[.P..

0x0030: 0000 d9bf 0e00 0000 0000 1011 1213 1415

0x0040: 1617 1819 1alb 1cld 1elf 2021 2223 2425 "#S%
0x0050: 2627 2829 2a2b 2c2d 2e2f 3031 3233 3435 &'()*+,-./012345
0x0060: 3637 67

13

Aggregating Taps

Traffic Ports Monitoring Ports
i A

i

“Bump in the wire”
Collection device can’t change packets
Cheap compared to inline devices

Where might taps be useful? Why? What are their downsides?

14

Inline Devices

E—

Much more expensive than a tap

Typically programmable and able to change specific packets in specific ways
If it fails it takes the link with it

Bad software can also take the link down

Where would an inline device be useful?
Why would you use it in place of a tap? What are the risks?

15

Naive PCAP Storage

1gbps x 3600 x 24 = 86400 gigabits
86400 + 8 =10800 gigabytes

* Double that for full-duplex
» Storage can get expensive quickly

16

Packets Per Second

1gbps + (64 bytes x 8 bits) =
10” bits/s + 512 bits = 1953125pps

Let H represent the overhead of storing one packet

Npps x Hpq,p = NH Bps

1gbps composed of average packet size 64 bytes

1gbps / (64 * 8 bits) = 1079 bits/s / 512 bits = 1,953,125 packets per second
1gbps / (1500 * 8 bits) = 1079 / 12000 = 83,333 pps
1gbps / (9000 * 8 bits) = 1079 / 72000 = 13888.9 pps

17

libpcap Format

4 bytes 4 bytes
File Packet Packet Packet | Packet
Header Header Data Header Data
J) k_Y_)
| |
24 bytes x bytes y bytes

18

Exercise

How much overhead does libpcap incur storing
packets for one hour on a saturated simplex
1gbps link with an average packet size of 1500
bytes?

19

libpcap overhead

Avg. Packet Size Packets Per Overhead

(bytes) Second (MB/s)
64 1,953,125 7.45
1500 83,333 0.32
7981 15,662 0.06
9000 13,888 0.05

Overhead
(GB / day)

628.64

26.82

5.04

4.47

20

1gbps / (64 * 8 bits) = 1079 bits/s / 512 bits = 1,953,125 packets per second

1gbps / (1500 * 8 bits) = 1079 / 12000 = 83,333 pps
1gbps / (9000 * 8 bits) = 1079 / 72000 = 13888.9 pps

20

Retention Policies

What to keep and for how long?

Data Example Retention Period

Full PCAP Weeks - Months
Flow Records Indefinitely

DNS Indefinitely

First N Bytes Months - Years

21

Since keeping full PCAP indefinitely is unrealistic, what can you retain indefinitely?
How do you get maximum value from very little information?

- examples: DNS, DHCP, first N bytes of each packet, flow data, eliminate data
you can never decrypt

BERKELEY PACKET FILTER

Surprisingly PowerfL

22

Berkeley Packet Filter

* a.k.a. BPF
* “man pcap-filter” on Unix systems

Conceptually similar to Wireshark filters

Filter on layer 2+

Richest in layers 2 -4

Very fast

23

Filtering Techniques

* BPFis limited, but fast
— Compiles to an optimized form
— Almost certainly faster than filters you write

 If you can use BPF, do it

24

Demo: Counting TCP Packets

You know a particular backdoor sends exactly
one message per TCP packet.

How can you use tcpdump and command line
tools to get a rough count of how many
messages have been sent?

tcpdump —r counting-tcp.pcap -s 0 “host 172.16.0.2 and tcp” 2>/dev/null | wc -

25

BPF Logic

e Combine BPF primitives with logical operators
— NOT, AND, OR

* Easy to filter host and TCP/UDP port

» Advanced filters for TCP, UDP, ICMP, etc.

* Access to raw packet bytes

26

What Does This Do?

host 8.8.4.4 and udp port 53

Only traffic to Only traffic to
or from this IP or from this
UDP port

Shows DNS requests and responses to or from 4.4.2.2. Unless you’re Google, this will
show you DNS traffic to and from your computers being answered by Google public
DNS.

How About This?

dst host 74.125.228.36 and
icmp[icmptype] = icmp-echo

28

How About This?

ip dst 74.125.228.36 and

Only traffic to this IP

icmp[icmptype] = icmp-echo

Filter on ICMP type

ICMP Echo Request (ping) packets with IP destination 74.125.228.36 (resolves to

google.com as of 29 December 2012). Will you see Echo Reply packets with this
filter?

One More

ip[2:2] >= 86 and ip[8:1] <= 4
and tcp[l1l3:1] & 4 ==

30

One More

ip[2:2] >= 86 and ip[8:1] <= 4

IP Length >= 86 IPTTL<=4

and tcp[l1l3:1] & 4 == 4

TCP RST

Why does logical & with 4 work for TCP RST?
This could be written much more easily: “greater 100 and ip[8:1] <=4 and
tcp[tcpflags] & tcp-reset == 1"

31

Exercise

You need to be notified immediately if anyone
sets up a successful TCP handshake to
172.16.191.1 on TCP port 80 or if they send it
more than 200 bytes on UDP port 53. Look at
alert.pcap.

Write a script using tcpdump that will send you
an email when either condition triggers.

tcpdump -n -r alert.pcap -XX 'host 172.16.191.1 and ((tcp port 80 and tcp[tcpflags] &
0x12 = 0x12) or (udp port 53 and greater 200))’

32

ADDRESS RESOLUTION PROTOCOL

5 1t P Ugge(In?

33

Network Connectivity

A

HTTP
TCP
IP
ARP
Ethernet

Router Switch

A
N

|

yyyyyyyy

Where could problems occur in here at each layer of the OSI model?

- layer 1: signaling problems

- layer 2: ARP poisoning

- layer 3: DHCP problems

- layer 4: dropped packets, congestion
- layer 5: not too much ;)

34

ARP

N

Router

172.16.0.254

N

Switch

A 4

172.16.0.1

Where could problems occur in here at each layer of the OSI model?
- layer 1: signaling problems

- layer 2: ARP poisoning
- layer 3: DHCP problems

- layer 4: dropped packets, congestion

- layer 5: not too much ;)

35

Exercise

Router < > Switch
A

A

172.16.0.254

Inline Capture
»

172.16.0.1 172.16.0.2 172.16.0.253

Where could problems occur in here at each layer of the OSI model?
- layer 1: signaling problems
- layer 2: ARP poisoning
- layer 3: DHCP problems
- layer 4: dropped packets, congestion
- layer 5: not too much ;)

36

Exercise

* Openarp[0-9]1{3}.pcap
* arpN.pcap shows traffic from 172.16.0.N
* |dentify:

— Default router IP address

— Default router MAC address

— IP and MAC address mappings

37

ARP Poisoning

N

Switch

4
A 4

Router

172.16.0.254

172.16.0.1

Where could problems occur in here at each layer of the OSI model?
- layer 1: signaling problems
- layer 2: ARP poisoning
- layer 3: DHCP problems
- layer 4: dropped packets, congestion
- layer 5: not too much ;)

38

ARP Poisoning

* Intercept all local traffic
* Low processor requirements
* Existing tools:

— arpspoof + fragroute

— sslstrip

— Ettercap
— Cain & Abel

39

HTTP

40

Hypertext Transfer Protocol

Line-based protocol

Intuitive fundamentals
* Many corner-cases

Ubiquitous
* Many uses

41

Line-Based

* Headers are separated by line breaks

— ll\r\n”

— Carriage-Return, Line-Feed
* Easy to read
* Works with existing line-based tools

— grep, sed, awk, tr, etc.

Arp133.pcap
Arp136.pcap
Arp138.pcap

42

HTTP

Header 1
Header 2
Header 3
Header n

Body

43

Headers

HTTP Verb

\

Protocol Version

/

GET / HTTP/1.0

|

Request Path

44

Headers

Header Value

/

Host: www.google.com

I

Header Name

45

Example

GET / HTTP/1.0

Host: www.google.com

User-Agent: wget

Connection: close

BodyDataBodyDataBodyDa

taBodyDataBodyData

46

Example

19db
3a2f
502f
743a
7277
6570
786b
7469
7879
6565

5a85
2£78
312e
2057
696e
743a
6364
6f6e
2d43
702d

e52c afdc
6b63 642e
310d 0a55
6765 742f
3131 2e34
202a 2f2a
2e63 6f6d
3a20 436c¢c
6f6e 6e65
416c 6976

4745
636f
7365
312e
2e32
0doa
0doa
6£73
6374
650d

5420
6d2f
7224
3134
290d
486f
436f
650d
696f
0a0d

6874
2048
4167
2028
0a4l
7374
6ebe
0a50
6e3a
O0a

7470
5454
656e
6461
6363
3a20
6563
726f
204b

.%Z..,..GET.http
://xkcd.com/ .HTT
P/1.1..User-Agen
t:.Wget/1.14.(da
rwinll.4.2)..Acc
ept:.*/*..Host:.
xkcd.com. .Connec
tion:.Close..Pro
xy-Connection: .K

eep-Alive....

47

Example

19db 5a85 e52c af9c
3a2f 2f78 6b63 642e
502f 312e 310d 0a55
743a 2057 6765 742f
7277 696e 3131 2e34
6570 743a 202a 2f2a
786b 6364 2e63 6f6d
7469 6f6e 3a20 436c¢C
7879 2d43 6f6e 6e65
6565 702d 416c 6976

4745
636f
7365
312e
2e32
0dOa
0dOa
6£73
6374
650d

5420 6874
6d2f 2048
722d 4167
3134 2028
290d 0a41l
486f 7374
436f 6ebe
650d 0a50
696f 6e3a
0a0d Oa

N

7470
5454
656e
6461
6363
3a20
6563
726f
204b

..%2..,..GET.http
://xkecd.com/ . .HTT
P/1.1..User-Agen
t:.Wget/1l.14. (da
rwinll.4.2)..Acc
ept:.*/*..Host:.
xkcd.com. .Connec
tion:.Close..Pro
xy-Connection: .K

eep-Alive....

What’s happening here?

48

Example

GET / HTTP/1.0\r\n <« CRLF splits headers
Host: www.google.com\r\n
User-Agent: wget\r\n
Connection: close\r\n

\ r\ 11 «— Blank line with CRLF ends headers

Body Data

49

Everybody Try This

$ echo -e "GET / HTTP/1.0\r\n
> Host: www.google.com\r\n
> \r\nu |

> nc www.google.com 80

What Did That Do?

50

This Is Just Text

* How would you find a particular header?
— It’s value?

* Can you search for strings in the body?
* What is the response code?

51

Exercise: Find All The Titles

We need to extract all of the web page titles
from a PCAP. Look in http.pcap for data. List
every title exactly once.

Use tcpdump for this exercise.

html.pcap

tcpdump -r html.pcap -nn -w - |strings|grep -E '<title>.*</title>’ |sed -r 's/
<[/1*title>//g'| sort -u

52

Exercise: All Websites

Find all of the websites that the host
172.16.191.140 visited in websites.pcap.
Do not list websites that other hosts visited.
Don’t forget about servers that may host
multiple websites!

Looking for unique hosts, not URI paths

tcpdump -r websites .pcap -n tcp port 80 -w - |strings|grep 'Host: '|sort -u

53

Limitations

* tcpdump and grep fall apart on large PCAPs
* tcpdump output not really parseable

* Could use libpcap or pynids
— Lots of boilerplate code to get going
— Not ideal for rapid prototyping

54

CHOPSHOP

Not Just For Cars

55

Chopshop

e http://www.github.com/MITRECND/chopshop

* MITRE-developed packet framework
— Based on libnids
— TCP reassembly
— Handles boilerplate code
— Python
— Great for rapid prototyping

56

Chopshop

* Framework provides a standard API

* Framework does not analyze packets

* Modules provide all the brains

* Invoke with a list of PCAP files and modules

57

payloads

* Module to dump packet contents

Useful for human-readable protocols
— HTTP, SMTP, IMAP, etc.

* Few command line flags
Can XOR data
Can hexdump data

Good first step in analysis

58

Invoking Chopshop

Schopshop -f http.pcap “payloads ”
—Run payloads module on http.pcap

$ find pcaps -type f |
> chopshop “payloads ”
—Run payloads on all files in pcaps directory

59

Simple Obfuscation

* Many simple techniques are frustrating
— Compression
— Packing
— Encoding
* Obfuscation is not encryption
— No key required to “break” it
— Still aggravating

60

XOR

Exclusive Or

Basis for many ciphers
— RC4, AES

Fast in hardware

Trivial in most programming languages
— Typically a built-in operator

Key management is easy

61

XOR Truth Table

Operandb | Result

1 0 1
1 1 0
0 0 0
0 1 1

Fora,b53{0,1},a®bistrueiff a = b

62

In Other Words

One or the other,
but not both.

Due to: http://en.wikipedia.org/wiki/Exclusive_or

63

Examples

Operandb | Result

0111
1100
1100
1111 0000
1011 0100
0x10
0x10

1100
1010

1101
1100
1111
1100
1010
0x0A
0x32

0011
0001

1010
0000
0011
1100
1110
0x1A
0x22

64

64

XORcise

$ chopshop -f xor.pcap “payloads ”
—Add “-o O0xNN” to XOR contents
— Can you guess the XOR key?

Need to download PCAP — not included in VM

65

File Carving From HTTP

* Demo: Wireshark
* Exercise: chopshop “http_extractor”

66

KNOWN UNKNOWNS

Why Can’t Everyone Use HTTP?

Unknown Protocols

* You will encounter something unfamiliar
— Frequently without client or server to test

* Malware often uses custom protocols

* So do many proprietary programs

68

Can You Ildentify It?

* Well-known port?
* Unusual port/protocol pairing?
— This will break Wireshark
e Constant or repeating values?
* Repeating structure or pattern?
— Check beginning of packets
— TLV is very common
— http://en.wikipedia.org/wiki/Type-length-value

69

You Can’t?

Can you acquire a client or server?
— May need to reverse it

Ask around

Consider obfuscation and encryption

You may need to consider alternatives

— Some things will always be a mystery

70

Endianness

Little Endian Big Endian

10
432
5555
5432

1000
3204
5555
3254

* “network order” is big endian

* x86 is little endian

0010
0432
5555
5432

71

Warmup Exercise

1. Use tcpdump, chopshop, or Wireshark to
identify the “unknown” flows in:
1. unknown-1.pcap
2. unknown-2.pcap
3. unknown-3.pcap

2. Can you identify the traffic?
3. Canyou decode it? How?

Unknown-1.pcap is actually naked SSL (SSL outside the context of e.g., HTTP) on port
22. Wireshark will assume that it’s SSH. You can tell that it’s SSL by looking at the
first six bytes sent from client to server or by observing the SSL certificate.

Unknown-2.pcap is a very simple message transmitted in plaintext with a little endian
DWORD header that encodes the length of the message that follows.

Unknown-3.pcap is actually the JackCR dfir challenge

72

DNS

Domain Name System

73

Domain Name System

* Resolve names to IP addresses
—e.g. www.google.com ->74.125.228.3

* Most applications use DNS
* DNS servers configured in operating system
— DHCP

— /etc/resolv.conf
— Windows NIC Configuration

74

Message Format

Header

Question

Answer

Authority

Additional

See RFC 1035

75

10 11 12 13 14

QR Opcode AA | TC | RD | RA z RCODE

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

16 bits (2 bytes) wide

See RFC 1035

* Header format shared for requests and responses
* IDisarandom 16 bitint
* QRissetto 0 for queries and 1 for responses

Reading Hexdumps

Stcpdump -i eth0 —XX -nn udp port 53

0x0000: 406c 8f4d 5c05 5057
0x0010: 0046 3783 0000 3cll
0x0020: 3bl7 0035 ddal 0032
0x0030: 0001 0000 0000 0478
0x0040: 0001 0001 c0O0c 0001
0x0050: 6b06 6a52

ag808
f4af4
60e9
6b63
0001

e000
8153
bl50
6403
0000

0800
1472
8180
636f
020b

4500
8153
0001
6d00
0004

This is a DNS response for xkcd.com

77

Exercise: DNS and tcpdump

Can you use a combination of
tcpdump and grep to discover what IP
address a name resolves to?

google.com

Look at dns-tcpdump.pcap

Dns-tcpdump.pcap

78

Solution

Stcpdump -r dns-tcpdump.pcap “udp
port 53” | grep -A 1 google.com

Can check that you have the correct response by checking the DNS ID printed by

tcpdump

79

dns_extractor

* Bundled chopshop module
* Examines UDP packets for DNS
* Prints or stores requests and responses

80

dns_extractor

$chopshop -f dns.pcap “dns_extractor -p”
— Print every DNS record
$chopshop -f dns.pcap -J out “dns_extractor -J”
— Write DNS records to file “out” in structured format
$find pcaps -type f |
> chopshop “dns_extractor —p”
— Run chopshop on every file in the “pcaps” directory

$find /example{01..03} -type f -iname > *.pcap
| sort | chopshop “dns_extractor —p”

— Examine PCAPs in three directories in sorted order

There was an error on the slides; “-r” should be “-f”

81

Exercise

List all DNS names and their resolutions found in
dns.pcap. Only list each (name, resolution) pair
once. You may use chopshop or tcpdump. If
you can, do it with both.

* Example “file-reader.py” might help
e Consider chopshop’s JSON-to-file option

82

Is Everything As It Seems?

* How many (name, resolution) pairs are there?
* How many DNS responses?
* How manyudp src port 537

83

CHOPSHOP MODULES

84

Module API Basics

False

True

v

4

handleStream()

85

85

Demo

* Openmy first module.py

86

Mystery Port 53 Traffic

* How to understand this traffic?

* Isit encrypted or obfuscated?
— With what algorithm?
—Is there a key? Can you acquire it?

87

XOR in Python

s = “\x00\x01\x01\x01\x04\x05"
key = 0x01
out = “” XOR

for char in s:

out += chr(ord(char)

/ Operator

Convert
character to int

" key)

88

XORcise

Decrypt and characterize the mystery traffic

Tips:

1. Remember the principles we just discussed
2. Iterate quickly

3. Worry about the process, not results

89

Outcomes

You captured PCAP

2. You worked on solving realistic,
challenging PCAP analysis problems

3. You studied how and when to use
different tools and how they might lie
to you

4. You analyzed an unknown protocol

90

Hopefully...

1. You understand how PCAP can help you
accomplish your goals

2. You can use a fundamental understanding of
network protocols to go above and beyond
existing tools

3. You had fun!

91

