
Xeno Kovah - 2010
xkovah at gmail

1

BINARIES

Approved for Public Release: 10-4654. Distribution Unlimited

All materials are licensed under a Creative
Commons “Share Alike” license.

•  http://creativecommons.org/licenses/by-sa/3.0/

2

Viruses

•  It's not Virii (http://en.wikipedia.org/wiki/
Plural_form_of_words_ending_in_-us)

•  Viruses are malware which self-
replicate, but which need humans to
initiate their execution. This is in
contrast to worms which can self-
replicate in the absence of humans.

•  We're primarily interested in viruses
which infect PE files, but they can infect
other file types as well.

3

Conceptual:
Executable file infection

Headers

.text

.data

.bss

…

Headers
specify
entry
point

Headers

.text

.data

.bss

…

I'm a Virus! :D

File gets
infected

4

Or Maybe…

Headers

.text

.data

.bss

…

Headers
specify
entry
point

Headers

.text

.data

.bss

…

I'm a Virus! :D

File gets
infected

5

inline hook

Or Maybe…

Headers

.text

.data

.bss

…

Headers
specify
entry
point

Headers

.text

.data

.bss

…

I'm a Virus! :D

File gets
infected

6

TLS Callback

Or Maybe…

Headers

.text
padding
.data

.bss

…

Headers
specify
entry
point

Headers

.text
I'm a Virus! :D

.data

.bss

…

File gets
infected

7

Or Maybe…

Headers

.text
padding
.data

.bss

…

Headers
specify
entry
point

Headers

.text
I'm a Virus! :D

.data

.bss

…

File gets
infected

8

inline hook

Padding

•  Show how between 0x4a4 and 0xf14 is
all just padding in the hello ELF binary,
and therefore it can be infected.

•  But we're going to go for a virus which
tacks itself to the end of the file, and
alters the headers to make the extra
data get loaded into memory.

9

Interlude

•  For the PE infector I was sitting around
thinking "How am I going to get the
address of CreateFile/WriteFile in a way
where I don't just do opportunistic infection
of files which already have those or
GetProcAddress in their IAT" and then
Corey Kallenberg reminded me that Skape
talked about EAT searching in his
excellent shellcode paper: http://
www.hick.org/code/skape/papers/win32-
shellcode.pdf, so thanks go out to Corey
and Skape.

10

Lab: BabysFirstPhageForPE.c

•  Is like the conceptual picture 1
•  Can only infect binaries in C:\VirusTarget
•  Has built in kill switch logic so that the parents

can infect binaries to create children, and
children can infect binaries to make
grandchildren, but the grandchildren are
sterile and can't have children of their own.

•  Also, it doesn't fix the
OptionalHeader.Checksum. So that must be
fixed before an infected file will run to infect
another file.

•  Doesn’t do anything malicious other than
replicate, and whether that’s malicious or not
is in the eye of the beholder

11

Steps
•  Copy HelloWorld and any other executables to infect to C:

\VirusTarget
•  Run BabysFirstPhageForPE.exe in VS debug mode

talking through the stages
•  Open infected file up with CFF Explorer, go to Rebuilder

section, and select only the "Update Checksum" option,
then close it and save the changes.

•  Open infected binary in WinDbg, set a breakpoint on the
entry point in the PE header (which is the virus entry
point), and step through the code

•  NOTE: If you're doing this on your own, make sure you
don't have any breakpoints set in the virus code at the
time that it copies itself into the buffer, otherwise the
breakpoints will get copied too! (We learn about how
breakpoints modify the code in Intermediate x86)

12

Throwback…TO THE MAX!
•  A virus in the days of botnets!: Virut
•  (see what they did there? Virus+=1? They’re so clever. Also called Virux…because X is awesome!)
•  http://www.f-secure.com/v-descs/virus_w32_virut.shtml
•  “Variants in the Virut family are polymorphic,

memory-resident, appending file infectors that
have Entry Point Obscuring (EPO)
capabilities.”

•  http://www.symantec.com/connect/blogs/w32virutcf-collateral-damage

•  “All of this sounds quite grim, but this threat
can be removed from infected networks by
following best practices.”

•  Of course! Best practices! In retrospect it’s all
so obvious!

13

Fortune favors the bold

•  Xpaj: Another misc virus
•  “It is not very common for a file infector to do more than simply

introduce trivial modifications to the files it infects. Virus authors
usually avoid complex modifications to the files because of the
possibility of corruption. W32.Xpaj.B is one of exceptions.”

•  http://www.symantec.com/connect/
blogs/w32xpajb-upper-crust-file-infector

•  Core principals the same, just another
way of going about it, but the point is,
now you can read and understand

14

Further Reading
(with the exception of the ~nemo link these are just misc googling that I haven’t read, so no guarantee of

quality)
•  PE infection

–  http://www.defcon.org/images/defcon-16/dc16-presentations/lclee/
defcon-16-lclee_vx-wp.pdf (compares PE vs ELF infection)

–  http://vx.netlux.org/29a/29a-7/Articles/29A-7.023
•  ELF infection

–  http://felinemenace.org/~mercy/slides/RUXCON2004-ELFfairytale.ppt
–  http://www.linuxsecurity.com/resource_files/documentation/virus-writing-

HOWTO/_html/index.html
–  http://vxheavens.com/lib/static/vdat/tuunix02.htm

•  Mach-O infection
–  http://felinemenace.org/~nemo/slides/mach-o_infection.ppt
–  http://vxheavens.com/lib/vrg01.html

•  Old sk00l
–  http://www.textfiles.com/virus/
–  http://vx.netlux.org/29a/main.html
–  http://vx.netlux.org/lib/ 15

Packers

•  Originally used to compress executables
back when disk space was at a premium

•  The executable would then decompress
itself in memory and run as normal

•  Nowadays they are mostly used for
obfuscating binaries. Specifically since all
the data for the original binary is
compressed and/or encrypted, it prevents
analysts from being able to infer things
about the binary based on strings or
function imports.

16

Conceptual
Packing: File On Disk

Headers

.text

.data

.bss

…

Headers

Compressed /
Encrypted Blob
Unpacking code

Headers
specify
entry
point

Pack

Headers
specify
entry
point

17

Original file
on disk

Packed file
on disk

Conceptual
Unpacking: Load Time

Headers

Compressed /
Encrypted Blob
Unpacking code

File on disk File in Virtual Memory
Read headers and
map file to memory

accordingly

Headers for packed file
must still reserve >= virtual
memory space used by
original executable

Headers

Compressed /
Encrypted Blob

Empty space

Unpacking code 18

Conceptual
Unpacking: Run Time

Headers

.text

.data

.bss

…

Unpacking code

Unpacking code
runs, replacing
its own memory
with original layout.
Final step is to jump
to original entry point,
at which point the
original executable
runs as normal

19

Headers

Compressed /
Encrypted Blob

Empty space

Unpacking code

The Ultimate Packer for
eXecutables (UPX)

•  http://upx.sourceforge.net/
•  Easy to understand, very cross-platform

compatible, legitimate packer which
also has an automatic unpacking ability
as well.

•  Run it as "upx File -o PackedFile" to
pack, and "upx -d PackedFile –o File" to
decompress.

•  Demo the header changes made by
UPX to both a PE and ELF file

20

UPX applied to PE hello.c

21

Before UPX After UPX

UPX applied to PE hello.c 2

22

Total virtual size = 0x518A

Total file size = 0x1C00

23

UPX applied to PE
hello.c 3

Total virtual size = 0x9000

Total file size = 0x1400

Covers the entire
original memory space

No data from file

UPX applied to ELF hello.c
readelf -l hello-static !
Elf file type is EXEC (Executable file)!
Entry point 0x80481e0!
There are 6 program headers, starting at offset 52!
Program Headers:!
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align!
 LOAD 0x000000 0x08048000 0x08048000 0x851df 0x851df R E 0x1000 (Total FileSize = 0x859B3)!
 LOAD 0x085f8c 0x080cef8c 0x080cef8c 0x007d4 0x02388 RW 0x1000 (Total MemSize = 0x87567)!
 NOTE 0x0000f4 0x080480f4 0x080480f4 0x00044 0x00044 R 0x4!
 TLS 0x085f8c 0x080cef8c 0x080cef8c 0x00010 0x00028 R 0x4!
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4!
 GNU_RELRO 0x085f8c 0x080cef8c 0x080cef8c 0x00074 0x00074 R 0x1!
!
 Section to Segment mapping:!
 Segment Sections...!
 00 .note.ABI-tag .note.gnu.build-id .rel.plt .init .plt .text __libc_freeres_fn .fini .rodata

__libc_atexit __libc_subfreeres .eh_frame .gcc_except_table !
 01 .tdata .ctors .dtors .jcr .data.rel.ro .got .got.plt .data .bss __libc_freeres_ptrs !
 02 .note.ABI-tag .note.gnu.build-id !
 03 .tdata .tbss !
 04 !
 05 .tdata .ctors .dtors .jcr .data.rel.ro .got !
!
readelf -l hello-static-packed !
Elf file type is EXEC (Executable file)!
Entry point 0xc40708!
There are 2 program headers, starting at offset 52!
Program Headers:!
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align!
 LOAD 0x000000 0x00c01000 0x00c01000 0x3ff08 0x3ff08 R E 0x1000 (Total FileSize = 0x3FF08)!
 LOAD 0x000314 0x080d1314 0x080d1314 0x00000 0x00000 RW 0x1000 (Total MemSize = 0x3FF08)!
!
 Original executable 2nd LOAD segment VirtAddr + MemSiz!

24

Pseudo Execution Flow Description
my wife pointed out if I don't obfuscate the addresses you could skip straight to step 4 ;)

•  0. Starts out running at its entry point
•  1. mmaps a page <SOMEWHERE>
•  2. Copies some of its code to <SOMEWHERE>
•  3. You will be stuck in loops the range between

<SOMEWHERE> and <SOMEWHERE> for a
while. Find the escape hatch!

•  4. Transfers control flow to <SOMEWHERE>
•  5. mmap allocates memory space sufficient to

cover original memory space
•  6. Decompresses data into original location
•  7. munmaps the original compressed memory area

(but leaves the 1 page at <SOMEWHERE>)
immediately before going to the original entry point
(OEP)

25

Other packers

•  Other packers introduce extensive anti-debug tricks
into the unpacking code.

•  Themida/VMProtect will take x86 code and convert
it into a series of equivalent instructions in a
custom bytecode language which is subsequently
interpreted into machine code (which may not
necessarily be the exact same code that existed in
the application pre-modification.)
–  Therefore the "VM" in VMProtect is a "software virtual

machine" in the "java virtual machine" sense. Java
interprets bytecode in order to eventually execute
equivalent machine code, these VMs interpret
bytecode to execute equivalent machine code.

26

27

http://www.defcon.org/images/defcon-15/dc15-presentations/dc-15-valsmith_and_delchi.pdf

Panda speculates long tail for packers, seems true

Further Reading
•  PE

–  Lots and lots of good stuff - http://pferrie.tripod.com/
–  http://www.codebreakers-journal.com/downloads/cbj/2006/

CBM_1_2_2006_BigBoote_Own_Packer.pdf
–  Automatic unpacking - http://www.joestewart.org/ollybone/tutorial.html
–  Automatic unpacking - http://bitblaze.cs.berkeley.edu/renovo.html
–  http://securitylabs.websense.com/content/Assets/

HistoryofPackingTechnology.pdf
–  http://www.lmgtfy.com/?q=PE+packer+filetype%3Apdf

•  ELF
–  Shiva - advanced packer w/ anti-debug tricks: http://www.blackhat.com/

presentations/bh-usa-03/bh-us-03-mehta/bh-us-03-mehta.pdf
–  Reversing shiva: http://www.blackhat.com/presentations/bh-federal-03/bh-

federal-03-eagle/bh-fed-03-eagle.pdf
–  Burneye packer - http://packetstormsecurity.org/groups/teso/burneye-1.0.1-

src.tar.bz2
–  Userland Exec - Just another name for what unpacking does as far as I'm

concerned, but still worth a read - http://www.securityfocus.com/archive/1/348638
–  http://www.lmgtfy.com/?q=ELF+packer+filetype%3Apdf

28

Other self-decompressors

•  The concept of self-decompression at runtime is
also used in other areas. For instance Cisco's IOS
is stored on the router in a compressed form which
decompresses in memory. (http://
www.coresecurity.com/files/attachments/
Killing_the_myth_of_Cisco_IOS_rootkits.pdf.rar)

•  BIOS can play the same game. (http://
www.coresecurity.com/files/attachments/
Persistent_BIOS_Infection_CanSecWest09.pdf)

•  Both of these are obviously doing this because
storage space is expected to be smaller than
memory.

29

Reflective DLL Injection
•  http://www.harmonysecurity.com/ReflectiveDllInjection.html
•  In contrast with normal DLL injection, where you might rely on

the OS to load the DLL for you, a reflective DLL is self-sufficient.
The code within it will handle the necessary initialization (that
the OS loader would normally do) in order to ensure it can
execute normally. The benefit is that this DLL will not be
registered anywhere by the OS as being a DLL, it will just be
some blob of code in memory somewhere.

•  Note, that this property can also potentially be used to find it.
That is, if you are doing memory analysis and you see
something that indicates control flow eventually transfers to
"some blob of code in memory somewhere", that is sort of
suspicious, and therefore bears investigation. (Of course then
the question becomes, how did you find this control flow
divergence ;))

•  That said, there are "legitimate" reasons there may be code
blobs running around in memory; see the Adobe Flash
ActionScript Just-In-Time (JIT) code generation engine…and
the subsequent utilization for exploits ("JIT Spray" - http://
www.semantiscope.com/research/BHDC2010/BHDC-2010-
Paper.pdf) 30

31

Hot Patching Running Binaries
(topic added under threat of physical violence by my wife!

"No! You have to add it! Patching is part of a binary's life! Don't make me give you to the back of my hand!")

•  Good talk here covering all the various ways you can
hotpatch, including microsoft's way: http://
www.blackhat.com/presentations/bh-usa-06/BH-US-06-
Sotirov.pdf

•  /hotpatch option can be added manually to the additional
compiler options. Then it will generate a "mov edi, edi"
instruction before the normal "push ebp; mov ebp, esp"
function prolog which will make your functions easier to
hotpatch in the future if necessary.

•  The "mov edi, edi" obviously does nothing, but it's 2 bytes,
which when combined with the 3 bytes for the "push ebp;
mov ebp, esp" == 5 bytes. If some code needs to hotpatch
a function, the first 5 bytes can then be overwritten with a
jmp instruction to jump to the new implementation of the
function, and that function knows it only needs to execute
the "push ebp; mov ebp, esp" instructions before it jumps
back to the original code.

32

33 modified from
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Sotirov.pdf

+5

Games Nerds Play:
TinyPE/TeenyELF/TinyMach-O
•  http://www.phreedom.org/solar/code/tinype/ -

97 bytes
•  http://www.muppetlabs.com/~breadbox/

software/tiny/teensy.html - 45 bytes
•  http://www.osxbook.com/blog/2009/03/15/

crafting-a-tiny-mach-o-executable - 165 bytes

34

Explore your world!
Read the Mach-O Spec! :D

•  http://developer.apple.com/mac/library/
documentation/DeveloperTools/
Conceptual/MachORuntime/Reference/
reference.html

•  How is it similar to the binary formats
we've covered in this class?

•  How is it different?
•  Where's the 0xbeef?

35

Bad Moon Rising

•  Unified Extensible Firmware Interface (UEFI) is
the replacement for BIOS. It's going to bring
BIOS into the modern day by making people
not have to program as much 16 bit x86.

•  It's also standardizing on the PE format for the
binaries. That means, now your firmware can
have modules which look a lot like Windows
executables and are a lot easier to programs.

•  Does anyone see why this might start to create
more problems for security at the firmware
level?

36

Binject

•  http://www.rnicrosoft.net/tools/binject_v0.1.zip
•  https://media.blackhat.com/bh-us-10/

presentations/Harbour/BlackHat-USA-2010-
Harbour-Black-Art-of-Binary-Hijacking-
slides.pdf

•  Can break apart a binary and put it back
together in a convenient trojaned form.
–  The only thing which is going to catch that sort of

thing are filesystem integrity checkers.
•  DLL Entry Point Redirection, Import Table DLL

Additions, TLS Callback and more, made easy

37

Teardown - What did we learn about?

•  Compilation
–  Lexical Analysis - turning characters into lexemes,

which can be grouped into tokens)
–  Syntax Analysis - Context Free Grammars in

Backus-Naur form (BNF), and Parse Trees (aka
Concrete Syntax Trees)

–  Abstract Syntax Trees (ASTs), Abstract Assembly
Trees(AATs), tiling on AATs to generate assembly

•  Linking
–  Splicing output object files together into a final

binary which may be standalone or may depend
on the loader to find external libraries for it

38

Teardown - What did we learn about?

•  Portable Executable (PE) binary format
used on Windows systems
–  3 flavors of imports + hooking, exports +

hooking & export forwarding, relocations w/
relavance to memory integrity checks, thread
local storage (TLS) & TLS callbacks,
resources & file embedding, digital signature
files

•  Executable and Linking Format (ELF)
binary format used on *nix systems
–  imports & dynamic linking, exports, relocations

39

Teardown - What did we learn about?

•  F*cking viruses, how do they work?!
•  Packing/Unpacking and the effects on

binary format and memory contents
•  Reflective DLL injection
•  Smallest possible binaries
•  And the rest!

•  Fly little birdie fly! It's time for you to
explore on your own. Go back through and
re-read explanations, read cited materials,
etc.

40

Extra Slides

41

42

X

X

X

X

X

X
X

X

Image by Ero Carrera

X

X

X

IMAGE_DIRECTORY_ENTRY_EXCEPTION

•  http://msdn.microsoft.com/en-us/
magazine/cc301808.aspx

•  “array of
IMAGE_RUNTIME_FUNCTION_ENTRY
structures, which are CPU-specific.
Pointed to by the
IMAGE_DIRECTORY_ENTRY_EXCEPTI
ON slot in the DataDirectory. Used for
architectures with table-based exception
handling, such as the IA-64. The only
architecture that doesn't use table-based
exception handling is the x86.”

43

44

X

X

X

X

X

X

X
X

X
X

X

X

Image by Ero Carrera

IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR

•  C:\WINDOWS\System32\TsWpfWrp.exe has a
non-zero instance of this

•  From Matt Pietrek's PE part 2 figures: http://
msdn.microsoft.com/en-us/magazine/
bb985997.aspx

•  "This value has been renamed to
IMAGE_DIRECTORY_ENTRY_COMHEADER
in more recent updates to the system header
files. It points to the top-level information
for .NET information in the executable,
including metadata. This information is in the
form of an IMAGE_COR20_HEADER
structure."

45

46

X

X

X

X

X

X

X
X

X
X

X

X

X

Image by Ero Carrera

IMAGE_DIRECTORY_ENTRY_ARCHITECTURE
aka IMAGE_DIRECTORY_ENTRY_COPYRIGHT

•  From Matt Pietrek's PE part 2 figures:
http://msdn.microsoft.com/en-us/
magazine/bb985997.aspx

•  "Points to architecture-specific data,
which is an array of
IMAGE_ARCHITECTURE_HEADER
structures. Not used for x86 or IA-64,
but appears to have been used for
DEC/Compaq Alpha."

47

48

X

X

X

X

X

X

X
X

X
X

X

X

X

X

Image by Ero Carrera

IMAGE_DIRECTORY_ENTRY_GLOBALPTR

•  From Matt Pietrek's PE part 2 figures:
http://msdn.microsoft.com/en-us/
magazine/bb985997.aspx

•  "The VirtualAddress field is the RVA to
be used as the global pointer (gp) on
certain architectures. Not used on x86,
but is used on IA-64. The Size field isn't
used. See the November 2000 Under
The Hood column for more information
on the IA-64 gp."

49

