
Xeno Kovah - 2010
xkovah at gmail

1

BINARIES

Part 3

Approved for Public Release: 10-4654. Distribution Unlimited

History lesson

•  “Sun Microsystems' SunOS introduced
dynamic shared libraries to UNIX in the late
1980s. UNIX System V Release 4, which Sun
co-developed, introduced the ELF object format
and adapted the Sun scheme to ELF. ELF was
clearly an improvement over the previous
object formats, and by the late 1990s it had
become the standard for UNIX and UNIX like
systems including Linux and BSD derivatives.”

•  from http://www.iecc.com/linker/linker10.html
which has more fun info about linking

2

Executable and Linkable Format (ELF)

•  Official Application Binary Interface (ABI)
http://www.sco.com/developers/devspecs/gabi41.pdf

•  x86 supplement - http://www.sco.com/developers/devspecs/abi386-4.pdf
•  Start at chapter 4

•  April 24th 2001 draft update (supposedly widely used) http://refspecs.freestandards.org/elf/

gabi4+/contents.html
•  Oct 29th 2009 draft update http://www.sco.com/developers/gabi/2009-10-26/contents.html

SCO
SCOOOOO!!!!!!!!!!!!

3

slashdot guy

Your new new best friends:
readelf, ldd, objdump,

•  readelf will generally be included with
any system which uses the ELF format.

•  ldd can be used to display the shared
libraries which an executable depends
on (but then, so can readelf)

•  We talked about objdump in the Intro
x86 class as a good way to see the
disassembly if you don’t have IDA or
you don’t want to run GDB.

4

Building Linux Executables/Libraries
•  Normal dynamically linked executable:

gcc -o <outfile> <source files>
•  Normal statically linked executable

gcc -static -o <outfile> <source files>
•  Shared Object/Library (like a DLL) (more description here: http://

www.ibm.com/developerworks/library/l-shobj/) "ld" is the linker
gcc -fPIC -c -o lib<name>.o <name>.c
ld -shared -soname lib<name>.so.1 -o lib<name>.so.1.0 -lc lib<name>.o

•  Static Library (use "ar" to create a library archive file)
gcc -c <source files>
(the result of the -c will be a bunch of .o object files)
ar cr lib<name>.a <object files ending in .o>
(the "cr" are the "create" and "replace existing .o files" options)
(subsequently when you want to link against your static archive, you can

give the following options for gcc. The -l is lowercase l, the -L is optional
if the file is already stored somewhere in the default path which will be
searched by the linker)

gcc -l<name> -L<path to lib<name>.a> -o <outfile> <source files>
5

Field sizes

6

aka
unsigned int, DWORD
unsigned short, WORD
unsigned int, DWORD
signed int,
unsigned int

Takeaway: everything except char and Elf32_Half are 4 bytes

But you also probably want to remember that _Addr is meant
to be a virtual address, and _Off is meant to be a file offset.

Overview

7
All subsequent images are from the ABI

• Note: Linker cares about sections (like .text, .data
etc), but multiple sections will get glommed together
into an unnamed segment.
• PE combined sections too, but still the resultant
section was called a section, and it still had a name.

ELF (File) Header

8

You are here :D

Just kidding :P

ELF Header 2
from /usr/include/elf.h

typedef struct!
{!
 unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */!
 Elf32_Half e_type; /* Object file type */!
 Elf32_Half e_machine; /* Architecture */!
 Elf32_Word e_version; /* Object file version */!
 Elf32_Addr e_entry; /* Entry point virtual address */!
 Elf32_Off e_phoff; /* Program header table file offset */!
 Elf32_Off e_shoff; /* Section header table file offset */!
 Elf32_Word e_flags; /* Processor-specific flags */!
 Elf32_Half e_ehsize; /* ELF header size in bytes */!
 Elf32_Half e_phentsize; /* Program header table entry size */!
 Elf32_Half e_phnum; /* Program header table entry count */!
 Elf32_Half e_shentsize; /* Section header table entry size */!
 Elf32_Half e_shnum; /* Section header table entry count */!
 Elf32_Half e_shstrndx; /* Section header string table index */!
} Elf32_Ehdr;!

9

ELF Header 3

•  e_ident[] starts with the magic number which is [0]
= 0x7f, [1] = ‘E’, [2] = ‘L’, [3] = ‘F’. This would be
equivalent to the MZ signature at the start of PE
files. Come on man, why’s it always got to be about
PEs? Hey, I’m just saying is all. Don’t bite my head
off. Whatever man, INFORMATION WANTS TO BE
FREE! OPEN SOURCE FOREVER! Are you done?
Yes. Good. There is other data encoded in e_ident,
but we don’t care about it that much and you can
just look it up in the ABI if you’re interested.

•  e_type values that we care about are ET_REL (1)
a relocatable file, ET_EXEC (2) an executable,
ET_DYN (3) a shared object, and maybe
ET_CORE (4)

10

ELF Header 4
•  e_entry is the VA (not RVA) of the entry point of the program. As

before, don’t expect this to point directly at main() be at the beginning
of .text. It will typically point at the C runtime initialization code.

•  e_phoff is a file offset to the start of the “program headers” which we
will talk about later.

•  e_shoff is a file offset to the start of the “section headers” which we
will talk about later.

•  e_phnum is the number of program headers arranged in a contiguous
array starting at e_phoff.

•  e_shnum is the number of program headers arranged in a contiguous
array starting at e_shoff.

•  e_ehsize, e_phentsize, and e_shentsize are the sizes of a single elf,
program, and section header respectively. Unless something like a
packer is messing with the format, for a 32 bit executable these should
be fixed to 52, 32, and 40 bytes respectively.

•  e_shstrndx was described somewhat confusingly in the spec but this
is the index of a specific section header in the section header table
which is the string table (which holds the names of the sections)

11

Display ELF header: readelf -h
user@ubuntu:~/code/hello$ readelf -h hello!
ELF Header:!
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00 !
 Class: ELF32!
 Data: 2's complement, little endian!
 Version: 1 (current)!
 OS/ABI: UNIX - System V!
 ABI Version: 0!
 Type: EXEC (Executable file)!
 Machine: Intel 80386!
 Version: 0x1!
 Entry point address: 0x8048300!
 Start of program headers: 52 (bytes into file)!
 Start of section headers: 4464 (bytes into file)!
 Flags: 0x0!
 Size of this header: 52 (bytes)!
 Size of program headers: 32 (bytes)!
 Number of program headers: 8!
 Size of section headers: 40 (bytes)!
 Number of section headers: 29!
 Section header string table index: 26!
!

12

E L F

ELF Header Fields

13

ELF Header
Program Header
…
Program Header

Code & Data

Section Header
…
Section Header

e_phnum = number
of program headers

e_phoff = file offset to
start of program headers

e_shoff = file offset to
start of program headers

e_shnum = number
of program headers

On Disk
ELF Header
Program Header
…
Program Header

Code & Data

Section Header
…
Section Header

In Memory

e_entry = entry point
where the first code in
the binary is run

e_shstrndx = index which specifies which
section header holds the names of the sections

Program (segment) Header

14

Program (segment) Header
typedef struct!
{!
 Elf32_Word p_type; /* Segment type */!
 Elf32_Off p_offset; /* Segment file offset */!
 Elf32_Addr p_vaddr; /* Segment virtual address */!
 Elf32_Addr p_paddr; /* Segment physical address */!
 Elf32_Word p_filesz; /* Segment size in file */!
 Elf32_Word p_memsz; /* Segment size in memory */!
 Elf32_Word p_flags; /* Segment flags */!
 Elf32_Word p_align; /* Segment alignment */!
} Elf32_Phdr;!

15

Program Header 2
•  p_type has the following subset of values that we care about:

–  PT_LOAD is the most important. This specifies a chunk of data from the file
which will be mapped into memory.

–  PT_DYNAMIC specifies a file/memory region which holds dynamic linking info.
–  PT_INTERP points a string which the loader uses to actually first load an
“interpreter”. The interpreter is then responsible for doing whatever with the
program which asked for it to be invoked. However, in practice, for executables,
the “interpreter” is the dynamic linker. And what it does is set everything up for
dynamic linking.

–  PT_PHDR is just for if the binary wants to be able to identify its program headers
–  PT_TLS is Thread Local Storage again
–  For the rest RTFM

•  An executable can run with only two PT_LOAD segments (as we shall see
later with UPX), everything else is optional. (I feel like they can run with only
one as well, but I haven’t tried…that’s good homework for you :))

16

Program Header 3

•  If you want to read about other things
like PT_NOTE, see the manual, if you
want to read about things like
PT_GNU_STACK (http://
guru.multimedia.cx/pt_gnu_stack/) or
PT_GNU_RELRO(http://www.airs.com/
blog/archives/189) there you go.

•  NOTE TO SELF: I should probably go
into that PT_GNU_STACK stuff since
it’s about executable stack.

17

Program Header 4

•  p_offset is where the data you want to map
into memory starts in the file. But again,
remember, only for PT_LOAD segments does
data actually get read from the file and mapped
into memory.

•  p_vaddr is the virtual address where this
segment will be mapped at.

•  p_paddr is supposed to be the physical
address, but “Because System V ignores
physical addressing for application programs,
this member has unspecified contents for
executable files and shared objects.” This is
frequently set to the same thing as p_vaddr, but
you can basically just ignore it.

18

Program Header 5
•  p_filesz is how much data is read from the file and

mapped into memory. Or alternatively, how much data
•  p_memsz is the size of the virtual memory allocation for

this segment. If p_memsz is > p_filesz, the extra space is
used for the .bss area. (Remember that conceptually
the .bss section is all about allocating some space in
memory for uninitialized variables which you don’t need/
want to store in the file.)

•  Also recall that the only way that the size in memory
(IMAGE_SECTION_HEADER.Misc.VirtualSize) could be
smaller than the size on disk
(IMAGE_SECTION_HEADER.RawData) for PE files was
due to the RawData being small and being aligned up to a
multiple of the file alignment size. ELF has no notion of file
alignment, therefore the following always is true: p_filesz
<= p_memsz.

19

Program Header 6

•  p_flags are the memory permission flags. PF_X =
0x1, PF_W = 0x2, PF_R = 0x4, or any number of
processor-specific things as long as the MSB is set
(which can be checked by ANDing with
PF_MASKPROC). So the lower 3 bits are RWX like
normal UNIX filesystem permissions.

•  p_align is the segment alignment. The segment
must start on a virtual address which is a multiple
of this value. For normal PT_LOAD segments, the
alignment is 0x1000. In contrast, PE sections don’t
have to be 0x1000 aligned, so it’s sort of like ELF
enforces memory alignment while PE doesn’t, and
PE enforces file alignment while ELF doesn’t.

20

Display program header: readelf -l
user@ubuntu:~/code/hello$ readelf -l hello!
!
Elf file type is EXEC (Executable file)!
Entry point 0x8048300!
There are 8 program headers, starting at offset 52!
!
Program Headers:!
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align!
 PHDR 0x000034 0x08048034 0x08048034 0x00100 0x00100 R E 0x4!
 INTERP 0x000134 0x08048134 0x08048134 0x00013 0x00013 R 0x1!
 [Requesting program interpreter: /lib/ld-linux.so.2]!
 LOAD 0x000000 0x08048000 0x08048000 0x004a4 0x004a4 R E 0x1000!
 LOAD 0x000f14 0x08049f14 0x08049f14 0x00100 0x00108 RW 0x1000!
 DYNAMIC 0x000f28 0x08049f28 0x08049f28 0x000c8 0x000c8 RW 0x4!
 NOTE 0x000148 0x08048148 0x08048148 0x00044 0x00044 R 0x4!
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4!
 GNU_RELRO 0x000f14 0x08049f14 0x08049f14 0x000ec 0x000ec R 0x1!
!
<SNIP>!
!

21

readelf -l part 2
user@ubuntu:~/code/hello$ readelf -l hello!
!
Elf file type is EXEC (Executable file)!
Entry point 0x8048300!
There are 8 program headers, starting at offset 52!
<SNIP> !
Section to Segment mapping:!
 Segment Sections...!
 00 !
 01 .interp !
 02 .interp .note.ABI-tag .note.gnu.build-

id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rel.
dyn .rel.plt .init .plt .text .fini .rodata .eh_frame !

 03 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss !
 04 .dynamic !
 05 .note.ABI-tag .note.gnu.build-id !
 06 !
 07 .ctors .dtors .jcr .dynamic .got !
!

22

program headers from statically linked binary

user@ubuntu:~/code/hello$ gcc -static -o hello-static hello.c !
user@ubuntu:~/code/hello$ readelf -l hello-static !
!
Elf file type is EXEC (Executable file)!
Entry point 0x80481e0!
There are 6 program headers, starting at offset 52!
!
Program Headers:!
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align!
 LOAD 0x000000 0x08048000 0x08048000 0x851df 0x851df R E 0x1000!
 LOAD 0x085f8c 0x080cef8c 0x080cef8c 0x007d4 0x02388 RW 0x1000!
 NOTE 0x0000f4 0x080480f4 0x080480f4 0x00044 0x00044 R 0x4!
 TLS 0x085f8c 0x080cef8c 0x080cef8c 0x00010 0x00028 R 0x4!
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4!
 GNU_RELRO 0x085f8c 0x080cef8c 0x080cef8c 0x00074 0x00074 R 0x1!
!
<SNIP>!
!

23

24

ELF Header
PT_PHDR:
Offset 0x34, FileSize 0x100
PT_INTERP
PT_LOAD
PT_LOAD
PT_DYNAMIC
PT_NOTE
PT_GNU_STACK
PT_GNU_RELRO

ELF Header
Program Header
Table

DATA

Section Header
Table (optional)

0x34

0x134

Program Segments
In File

25

ELF Header
PT_PHDR
PT_INTERP:
Offset 0x134, FileSize 0x13
PT_LOAD
PT_LOAD
PT_DYNAMIC
PT_NOTE
PT_GNU_STACK
PT_GNU_RELRO

ELF Header
Program Header
Table

DATA

Section Header
Table (optional)

0x134
/lib/ld-linux.so.2 0x147

Program Segments
In File

26

ELF Header
PT_PHDR
PT_INTERP
PT_LOAD:
Offset 0, FileSize 0x4A4
PT_LOAD
PT_DYNAMIC
PT_NOTE
PT_GNU_STACK
PT_GNU_RELRO

ELF Header
Program Header
Table

DATA

Section Header
Table (optional)

0x0

0x4A4

Program Segments
In File

27

ELF Header
PT_PHDR
PT_INTERP
PT_LOAD
PT_LOAD:
Offset 0xF14, FileSize 0x100
PT_DYNAMIC
PT_NOTE
PT_GNU_STACK
PT_GNU_RELRO

ELF Header
Program Header
Table

DATA

Section Header
Table (optional)

0xF14

0x1014

Program Segments
In File

28

ELF Header
PT_PHDR
PT_INTERP
PT_LOAD
PT_LOAD
PT_DYNAMIC:
Offset 0xF28, FileSize 0xC8
PT_NOTE
PT_GNU_STACK
PT_GNU_RELRO

ELF Header
Program Header
Table

DATA

Section Header
Table (optional)

0xF28

0xFF0
Program Segments
In File

29

ELF Header
PT_PHDR
PT_INTERP
PT_LOAD
PT_LOAD
PT_DYNAMIC
PT_NOTE:
Offset 0x148, FileSize 0x44
PT_GNU_STACK
PT_GNU_RELRO

ELF Header
Program Header
Table

DATA

Section Header
Table (optional)

0x18C

0x148

Program Segments
In File

30

ELF Header
PT_PHDR
PT_INTERP
PT_LOAD
PT_LOAD
PT_DYNAMIC
PT_NOTE
PT_GNU_STACK: Special Purpose
Offset 0, FileSize 0
PT_GNU_RELRO

ELF Header
Program Header
Table

DATA

Section Header
Table (optional)

0x18C

0x148

Program Segments
In File

31

ELF Header
PT_PHDR
PT_INTERP
PT_LOAD
PT_LOAD
PT_DYNAMIC
PT_NOTE
PT_GNU_STACK
PT_GNU_RELRO:
Offset 0xF14, FileSize 0xEC

ELF Header
Program Header
Table

DATA

Section Header
Table (optional)

0xF14

0x1000
Program Segments
In File

Mapping into memory

•  The dynamic linker reads data from the ELF file
in chunks 0x1000 bytes large (or possibly
whatever size the PT_LOAD alignment is set
to, but I've only ever seen 0x1000, and I don't
want to look at the source code.)

•  This leads to some interesting effects in terms
of "padding" that occurs before or after the data
that a segment actually specifies.

•  In all cases, the loader reads the 0x1000 chunk
such that the specified file offset will still map to
the specified virtual address.

32

33

ELF Header
PT_PHDR
PT_INTERP
PT_LOAD:
Offset 0, FileSize 0x4A4
PT_LOAD
PT_DYNAMIC
PT_NOTE
PT_GNU_STACK
PT_GNU_RELRO

ELF Header
Program Header
Table

DATA

Section Header
Table (optional)

0x0

0x4A4

LOAD Segment
Area On Disk

34

ELF Header
PT_PHDR
PT_INTERP
PT_LOAD:
VirtAddr 0x8048000, MemSize 0x4a4
PT_LOAD
PT_DYNAMIC
PT_NOTE
PT_GNU_STACK
PT_GNU_RELRO

ELF Header
Program Header
Table

DATA

Section Header
Table (optional)

0x0

0x4A4

LOAD Segment
Area Read Into Memory 0x1000

Extra
Data

35

ELF Header
PT_PHDR
PT_INTERP
PT_LOAD:
VirtAddr 0x8048000, MemSize 0x4a4
PT_LOAD
PT_DYNAMIC
PT_NOTE
PT_GNU_STACK
PT_GNU_RELRO

ELF Header
Program Header
Table

DATA

Section Header
Table (optional)

0x8048000

0x80484A4

LOAD Segment
Area In Virtual Memory 0x8049000

Extra
Data

36

ELF Header
PT_PHDR
PT_INTERP
PT_LOAD
PT_LOAD:
Offset 0xF14, FileSize 0x100
PT_DYNAMIC
PT_NOTE
PT_GNU_STACK
PT_GNU_RELRO

ELF Header
Program Header
Table

DATA

Section Header
Table (optional)

0xF14

0x1014

LOAD Segment
Area On Disk

37

ELF Header
PT_PHDR
PT_INTERP
PT_LOAD
PT_LOAD:
VirtAddr 0x8049F14, MemSize 0x108
PT_DYNAMIC
PT_NOTE
PT_GNU_STACK
PT_GNU_RELRO

ELF Header
Program Header
Table

DATA

Section Header
Table (optional)

0xF14

0x1000
0x1014
…
EOF

LOAD Segment
Area Read Into Memory

Extra
Data

Extra
Data

ELF Header
PT_PHDR
PT_INTERP
PT_LOAD:
VirtAddr 0x8048000, MemSize 0x4a4
PT_LOAD:
VirtAddr 0x8049F14, MemSize 0x108
PT_DYNAMIC
PT_NOTE
PT_GNU_STACK
PT_GNU_RELRO

ELF Header
Program Header
Table

DATA

Section Header
Table (optional)

0x8048000

LOAD Segment
Area In Virtual Memory
NOTE: I CHANGED SCALE!

ELF Header
Program Header
Table

DATA

0x8049000

0x80484A4

0x8049F14

0x804A000
0x804A014

0x804B000

VALID

JUNK

JUNK

VALID

JUNK

ELF Header
PT_PHDR
PT_INTERP
PT_LOAD:
VirtAddr 0x8048000, MemSize 0x4a4
PT_LOAD:
VirtAddr 0x8049F14, MemSize 0x108
PT_DYNAMIC
PT_NOTE
PT_GNU_STACK
PT_GNU_RELRO

0x8048000

LOAD Segment
Area In Virtual Memory
Intention

0x8049000

0x80484A4

0x8049F14

0x804A000
0x804A014

0x804B000

VALID

VALID
P.S. .BSS :)
FileSize = 0x100
MemSize = 0x108

ELF Header
PT_PHDR
PT_INTERP
PT_LOAD
PT_LOAD
PT_DYNAMIC
PT_NOTE
PT_GNU_STACK (N/A)
PT_GNU_RELRO

0x8048000

LOAD Segment
Area In Virtual Memory
All Program Headers /
Segments Accounted For

0x8049000

0x80484A4

0x8049F14

0x804A000
0x804A014

0x804B000

P.S. .BSS :)
FileSize = 0x100
MemSize = 0x108

Needs an old
school Apple
logo :) (but not
right order)

How do I know…
•  That the loader keeps reading after 0x4a4 for

instance? Couldn't it just write that much data and
then the rest could be whatever happened to be on
the page which it was mapped to?

•  It could, but it doesn't. You need proof pudding! If
it's reading the data past 0x4A4, then the data at
offset 0x4A5… should be in virtual memory at
0x80484A5…

•  hexdump -C -s 0x4A5 -n 10 hello
•  gdb ./hello
•  b main
•  r
•  x/10xb 0x80484A5

41

Haha, don't you hate zeros?

•  How about the other way. If we believe
that the loader is reading unnecessary
data before the 0xF14 offset for the
second load section, then 0x8049000
should be the same thing as offset 0 into
the file.

•  hexdump -C -n 10 hello
•  gdb ./hello
•  b main
•  r
•  x/10bx 0x8049000

42

POP QUIZ!

•  (Ask multiple students.)
•  a) Name 1 way that PE sections are

similar to ELF segments.
•  b) Name 1 way they differ.

43

Section Header

44

Section Headers 2
typedef struct!
{!
 Elf32_Word sh_name; /* Section name (string tbl index) */!
 Elf32_Word sh_type; /* Section type */!
 Elf32_Word sh_flags; /* Section flags */!
 Elf32_Addr sh_addr; /* Section virtual addr at execution */!
 Elf32_Off sh_offset; /* Section file offset */!
 Elf32_Word sh_size; /* Section size in bytes */!
 Elf32_Word sh_link; /* Link to another section */!
 Elf32_Word sh_info; /* Additional section information */!
 Elf32_Word sh_addralign; /* Section alignment */!
 Elf32_Word sh_entsize; /* Entry size if section holds table */!
} Elf32_Shdr;!
!

45

Section Headers 3
•  sh_name is an offset in bytes into the string table

which points to the name of the section. There is a
null character at offset 0 in the string table, so
anything with 0 for this value has no name.
Reminder: the string table is found by consulting
the e_shstrndx in the ELF Header which specifies
an index into the section header table.

•  As with the Program Header, the section header
utilizes a type field, sh_type, and a bunch of
different types which can specify vastly different
interpretations for the section header.

•  Ponder for a moment the parallels and
perpendicularity of PE and ELF wrt sections and
section typing. How do you specify a section type
in PE?

46

Section Headers 4
types for sh_type

•  SHT_PROGBITS is a sort of the catch-
all for anything which is valid but doesn't
have some other special predefined
type

•  SHT_STRTAB is for string tables
•  SHT_DYNAMIC is for dynamic linking

information
•  SHT_NOBITS is for things which take

no space in the file but do take space in
memory (like .bss)

47

Section Headers 5
types for sh_type

•  SHT_NULL is not used, and therefore
other members of the section header are
undefined. The first section header is
always of this type.

•  SHT_SYMTAB and SHT_DYNSYM are
symbol tables used for linking or dynamic
linking

•  SHT_RELA and SHT_REL are for two
different types of relocations talked about
later.

•  SHT_HASH is a symbol table hash
48

Section Headers 6
•  sh_flags can have the values SHF_WRITE = 0x1,

SHF_ALLOC = 0x2, SHF_EXECINSTR = 0x4, or any
number of processor-specific things as long as the MSB is
set (which can be checked by ANDing with
SHF_MASKPROC). Of these, SHF_ALLOC probably
needs a little more explaining. SHF_ALLOC declares
whether or not this section is going to occupy memory
during program execution. The .debug* or .shstrtab are
examples of sections that don't set this bit (and also set
the sh_addr to 0 as was previously described as a way to
indicate it won't reside in memory.)

•  sh_addr is the virtual address where this section starts in
memory. It's set to 0 if the section won't reside in memory.

•  sh_offset is the file offset to the start of this data. This is
still set for things with type SHT_NOBITS as it is the
"conceptual" offset ;)

49

Section Headers 7

•  sh_size is the size of the section in
bytes

50

sh_type! sh_link! sh_info!

Section Headers 8

•  sh_addralign is the alignment constraint
sh_addr if any (there is no constraint if it is
set to 0 or 1). sh_addr mod sh_addralign
must be 0, and sh_addralign must be an
integral power of 2.

•  Some sections such as a symbol table
have an array of fixed-size fields. For such
sections sh_entsize is the size in bytes of
each entry. For sections which aren't
organized this way, this field is 0.

51

Viewing section header: readelf -S
user@ubuntu:~/code/hello$ readelf -S hello!
There are 29 section headers, starting at offset 0x1170:!
!
Section Headers:!
 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al!
 [0] NULL 00000000 000000 000000 00 0 0 0!
 [1] .interp PROGBITS 08048134 000134 000013 00 A 0 0 1!
 [2] .note.ABI-tag NOTE 08048148 000148 000020 00 A 0 0 4!
 [3] .note.gnu.build-i NOTE 08048168 000168 000024 00 A 0 0 4!
 [4] .gnu.hash GNU_HASH 0804818c 00018c 000020 04 A 5 0 4!
 [5] .dynsym DYNSYM 080481ac 0001ac 000050 10 A 6 1 4!
 [6] .dynstr STRTAB 080481fc 0001fc 00004a 00 A 0 0 1!
 [7] .gnu.version VERSYM 08048246 000246 00000a 02 A 5 0 2!
 [8] .gnu.version_r VERNEED 08048250 000250 000020 00 A 6 1 4!
 [9] .rel.dyn REL 08048270 000270 000008 08 A 5 0 4!
 [10] .rel.plt REL 08048278 000278 000018 08 A 5 12 4!
 [11] .init PROGBITS 08048290 000290 000030 00 AX 0 0 4!
 [12] .plt PROGBITS 080482c0 0002c0 000040 04 AX 0 0 4!
 [13] .text PROGBITS 08048300 000300 00016c 00 AX 0 0 16!
 [14] .fini PROGBITS 0804846c 00046c 00001c 00 AX 0 0 4!
 [15] .rodata PROGBITS 08048488 000488 000015 00 A 0 0 4!
 [16] .eh_frame PROGBITS 080484a0 0004a0 000004 00 A 0 0 4!
 [17] .ctors PROGBITS 08049f14 000f14 000008 00 WA 0 0 4!
 [18] .dtors PROGBITS 08049f1c 000f1c 000008 00 WA 0 0 4!
 [19] .jcr PROGBITS 08049f24 000f24 000004 00 WA 0 0 4!
 [20] .dynamic DYNAMIC 08049f28 000f28 0000c8 08 WA 6 0 4!
 [21] .got PROGBITS 08049ff0 000ff0 000004 04 WA 0 0 4!
 [22] .got.plt PROGBITS 08049ff4 000ff4 000018 04 WA 0 0 4!
 [23] .data PROGBITS 0804a00c 00100c 000008 00 WA 0 0 4!
 [24] .bss NOBITS 0804a014 001014 000008 00 WA 0 0 4!
 [25] .comment PROGBITS 00000000 001014 00006c 01 MS 0 0 1!
 [26] .shstrtab STRTAB 00000000 001080 0000ee 00 0 0 1!
 [27] .symtab SYMTAB 00000000 0015f8 000400 10 28 44 4!
 [28] .strtab STRTAB 00000000 0019f8 0001fb 00 0 0 1!
Key to Flags:!
 W (write), A (alloc), X (execute), M (merge), S (strings)!
 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)!
 O (extra OS processing required) o (OS specific), p (processor specific)!
!

52

POP QUIZ!

•  (Ask multiple students.)
•  a) Name 1 way that PE sections are

similar to ELF sections.
•  b) Name 1 way they differ.

53

"Special Sections"
awwwww, idnt dat special

54

Special Sections 2
just so you know what the names roughly mean

•  .init = code which is called to initialize a runtime environment (e.g.
initializes the C/C++ runtime)

•  .fini = the flip side of .init, code which should be run at termination
•  .text = main body of program code
•  .bss = uninitialized writable data, takes no space in the file
•  .data = initialized writable data
•  .rdata = initialized read-only data (e.g. strings)
•  .debug = symbolic debugging information (e.g. structure definitions,

local variable names, etc). Not loaded into memory image.
•  .line / .debug_line = correspondences between asm and source code

line numbers. GNU stuff calls this .debug_line
•  .comment = version information
•  .note = "Sometimes a vendor or system builder needs to mark an

object file with special information that other programs will check for
conformance, compatibility, etc. Sections of type SHT_NOTE and
program header elements of type PT_NOTE can be used for this
purpose." There's an entire section specifying the form of note
information, but the notes don't effect execution at all.

55

Special Sections 3
just so you know what the names roughly mean

•  .interp = the string specifying the interpreter. The
PT_INTERP program header points at this section

•  .dynamic = dynamic linking information. The
PT_DYNAMIC program header points at this
section.

•  .dynstr = string table for dynamic linking
•  .dynsym = dynamic linking symbol table
•  .hash = symbol hash table
•  .symtab = non-dynamic linking symbol table
•  .strtab = string table, most often for non-dynamic

linked symbol names
•  .shstrtab = section header string table (names of

section headers like ".text", ".data", etc

56

Special Sections 4
just so you know what the names roughly mean

•  .got = Global Offset Table used to help out position
independent code

•  .plt = Procedure Linkage Table used for "delay-load" aka
"dynamic" aka "lazy" linking/resolution of imported
functions.

•  .got.plt = chunk of GOT used to support the PLT
•  .rel* or .rela* = relocation information
•  .ctors/.dtors = constructors/destructors not necessarily C+

+ con/destructors. You can use "__attribute__
((constructor));" on functions to make them constructors,
and then they will run before main(). You can apply
"__attribute__ ((destructor));" and the function will run just
after main() exits.

•  .jcr = java class registration
•  .eh_frame = exception frame

57

The notorious PLT and the resolution

•  The PLT supports "lazy" linking to
imported functions. This is basically the
same as the "delay-load" linking for PE.

58

dynamic linking
hello

hi
how you doing?

fine, thanks.

59

.text
…
call <puts@plt>
…
call <puts@plt>
.plt
…
<puts@plt> jmp *<.got.plt+X>
<puts@plt+6> push $0x10
<puts@plt+11> jmp <dynamic linker>
…
.got.plt
…
<.got.plt+X>
…

dynamic linker

libc
…
<puts>

<puts@plt+6>

1

dynamic linking
hello

hi
how you doing?

fine, thanks.

60

.text
…
call <puts@plt>
…
call <puts@plt>
.plt
…
<puts@plt> jmp *<.got.plt+X>
<puts@plt+6> push $0x10
<puts@plt+11> jmp <dynamic linker>
…
.got.plt
…
<.got.plt+X>
…

dynamic linker

libc
…
<puts>

<puts@plt+6>

2

dynamic linking
hello

hi
how you doing?

fine, thanks.

61

.text
…
call <puts@plt>
…
call <puts@plt>
.plt
…
<puts@plt> jmp *<.got.plt+X>
<puts@plt+6> push $0x10
<puts@plt+11> jmp <dynamic linker>
…
.got.plt
…
<.got.plt+X>
…

dynamic linker

libc
…
<puts>

<puts@plt+6>

3

dynamic linking
hello

hi
how you doing?

fine, thanks.

62

.text
…
call <puts@plt>
…
call <puts@plt>
.plt
…
<puts@plt> jmp *<.got.plt+X>
<puts@plt+6> push $0x10
<puts@plt+11> jmp <dynamic linker>
…
.got.plt
…
<.got.plt+X>
…

dynamic linker

libc
…
<puts>

<puts@plt+6>

4

<puts>

dynamic linking
hello

hi
how you doing?

fine, thanks.

63

.text
…
call <puts@plt>
…
call <puts@plt>
.plt
…
<puts@plt> jmp *<.got.plt+X>
<puts@plt+6> push $0x10
<puts@plt+11> jmp <dynamic linker>
…
.got.plt
…
<.got.plt+X>
…

dynamic linker

libc
…
<puts>

<puts>

5

dynamic linking
hello

hi
how you doing?

fine, thanks.

64

.text
…
call <puts@plt>
…
call <puts@plt>
.plt
…
<puts@plt> jmp *<.got.plt+X>
<puts@plt+6> push $0x10
<puts@plt+11> jmp <dynamic linker>
…
.got.plt
…
<.got.plt+X>
…

dynamic linker

libc
…
<puts>

<puts>

6

dynamic linking
hello

hi
how you doing?

fine, thanks.

65

.text
…
call <puts@plt>
…
call <puts@plt>
.plt
…
<puts@plt> jmp *<.got.plt+X>
<puts@plt+6> push $0x10
<puts@plt+11> jmp <dynamic linker>
…
.got.plt
…
<.got.plt+X>
…

dynamic linker

libc
…
<puts>

<puts>

7

Walk with me, won't you?
gdb ./hello2!
(gdb) display/10i $eip!
(gdb) b puts!
(gdb) b *0x80483d0!
(gdb) start!
=> 0x80483b7 <main+3>: !and $0xfffffff0,%esp!
 0x80483ba <main+6>: !sub $0x10,%esp!
 0x80483bd <main+9>: !movl $0x80484a0,(%esp)!
 0x80483c4 <main+16>: !call 0x80482f0 <puts@plt>!
 0x80483c9 <main+21>: !movl $0x80484ad,(%esp)!
 0x80483d0 <main+28>: !call 0x80482f0 <puts@plt>!
 0x80483d5 <main+33>: !leave !
 0x80483d6 <main+34>: !ret!
(gdb) si 4!
=> 0x80482f0 <puts@plt>: !jmp *0x804a008!
 0x80482f6 <puts@plt+6>:!push $0x10!
 0x80482fb <puts@plt+11>: !jmp 0x80482c0!

66

A lovely day for a stroll
(gdb) x/x 0x804a008!
0x804a008 <_GLOBAL_OFFSET_TABLE_+20>: !0x080482f6!
!
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al!
[22] .got.plt PROGBITS 08049ff4 000ff4 000018 04 WA 0 0 4!
!
(gdb) si 3!
=> 0x80482c0:!pushl 0x8049ff8!
 0x80482c6:!jmp *0x8049ffc!
!
(gdb) x/x 0x8049ffc!
0x8049ffc <_GLOBAL_OFFSET_TABLE_+8>: !0x00123ec0!
!
(gdb) si 2!
0x00123ec0 in ?? () from /lib/ld-linux.so.2!
1: x/10i $eip!
=> 0x123ec0: !push %eax!
 0x123ec1: !push %ecx!
 0x123ec2: !push %edx!
 0x123ec3: !mov 0x10(%esp),%edx!
 0x123ec7: !mov 0xc(%esp),%eax!
 0x123ecb: !call 0x11e080!

67

In the dynamic linker

The stillness of the air portends our
doom, wouldn’t you say?

(gdb) c!
Continuing.!
!
Breakpoint 2, 0x0018da96 in puts () from /lib/libc.so.6!
1: x/10i $eip!
=> 0x18da96 <puts+6>: !mov %ebx,-0xc(%ebp)!
 0x18da99 <puts+9>: !mov 0x8(%ebp),%eax!
 0x18da9c <puts+12>:!call 0x145b1f!
!
(gdb) c!
Continuing.!
Hello world!!
!
Breakpoint 3, 0x080483d0 in main ()!
1: x/10i $eip!
=> 0x80483d0 <main+28>: !call 0x80482f0 <puts@plt>!
 0x80483d5 <main+33>: !leave !
 0x80483d6 <main+34>: !ret ! 68

Ominous
(gdb) si!
0x080482f0 in puts@plt ()!
1: x/10i $eip!
=> 0x80482f0 <puts@plt>: !jmp *0x804a008!
 0x80482f6 <puts@plt+6>: !push $0x10!
 0x80482fb <puts@plt+11>:!jmp 0x80482c0!
!
(gdb) x/x 0x804a008!
0x804a008 <_GLOBAL_OFFSET_TABLE_+20>: !0x0018da90!
!
(gdb) x/10i 0x0018da90!
 0x18da90 <puts>: !push %ebp!
 0x18da91 <puts+1>:!mov %esp,%ebp!
!
TADA! The second time you go to call puts, the .got.plt

entry is now filled in with the address of the
function, rather than the address of some code in the
dynamic linker!

69

ANY way you want it
THAT'S the way you need it!

•  If you set LD_BIND_NOW=1 in your environment variables, it
will tell the dynamic linker to resolve all imports (PLT entries)
before handing control to the program. (Remember, the dynamic
linker is the "interpreter" which gets to run before the actual
program.) This means you're forcing it to behave more like the
Windows loader, which resolves all (quiz: except which?)
imports at program start.

•  export LD_BIND_NOW=1
•  gdb ./hello
•  proof pudding
•  Now, proof pudding with special b*1 sauce (eat your heart out

A1 sauce!)
•  You can set an invalid breakpoint like "b *1" and then run and

you will get control after things have been mapped into memory
but before the dynamic linker has run.

•  Also use "info proc" and "pmap <pid>" to prove dynamic linker is
mapped into memory.

70

PLT hooking

•  Just like with IAT hooking on PE, we can
do PLT hooking on ELF. But as with
before, we first need a way to get into the
memory address space.

•  We will use the cheap LD_PRELOAD
environment variable way of "shared
object injection" (like DLL injection). With
this variable set, the specified shared
object will be loaded into memory earlier
than any of the other imported shared
objects, for every executable which is
started

71

Runtime Importing ELF

•  Just as Windows has LoadLibrary() and
GetProcAddress() which programmers can call
to load libraries and run functions which aren't
in the imports, so too does POSIX have dlopen
() and dlsym().

•  These functions can be abused by malware to
obfuscate the used functions, etc, the same
way the Windows ones can.

•  FWIW glibc added on a dladdr() which takes a
function pointer and tries to figure out the base
address of the module it resides in, file path of
the module, and symbol name of the function.

•  RTFMan page for more info
72

Thread Local Storage

•  Much more about TLS:
•  http://www.akkadia.org/drepper/tls.pdf
•  Sorry, no callback functions like PE,

thus making it fairly uninteresting.
Instead, there's just an initialization blob
that gets written into the location of the
vars, so that they have their initialization
values.

73

TODO:

•  Start talking about linking process again
•  Then cover some compiler options and

linker options

74

Position Independent Code

•  We saw the -fPIC option used in order to
generate shared libraries for Linux. This
generates position independent code, which is
capable of being run no matter where it is
loaded into memory. This is in contrast to
normal "relocatable" code, which needs help
from the OS loader in order to recalculate
hardcoded offsets which are built into the
assembly instructions.

•  The Windows compiler cannot generate PIC
code, all code requires fixups to be performed if
the code is not loaded at it's "preferred" base
address in memory.

75

ELF Kickers: Kickers of ELF

•  http://www.muppetlabs.com/~breadbox/software/
elfkickers.html

•  sstrip removes section headers
•  objdump subsequently fails to disassemble the file
•  gdb *used* to refuse to debug such a program, but it

looks like they’ve fixed it
76

Put your ELF on a diet with Diet Libc

•  Diet Libc is a replacement for GNU Libc which tries
to remove the bloat. (There are other such projects
like uClibc (the u is micro), or tlibc (Tiny Libc))

•  I just installed the dietlibc-dev ubuntu package
•  diet gcc hello.c -o hello-dietlibc!
•  711 hello-dietlibc-sstripped!
•  2484 hello-dietlibc!
•  4108 hello-sstripped!
•  5528 hello-stripped!
•  7155 hello!
•  8247 hello-ggdb!
•  616096 hello-static!

77

