
Xeno Kovah - 2010
xkovah at gmail

1

BINARIES!
PART 2

Approved for Public Release: 10-4654. Distribution Unlimited

All materials are licensed under a Creative
Commons “Share Alike” license.

•  http://creativecommons.org/licenses/by-sa/3.0/

2

Executable Formats

•  Common Object File Format (COFF)
was introduced with UNIX System V.

•  Windows has Portable Executable (PE)
format. Derived from COFF.

•  Modern unix derivatives tend to use the
Executable and Linkable Format (ELF).

•  Mac OS X uses the Mach Object
(Mach-o) format.

3

Different target binary formats
•  Executable (.exe on Windows, no suffix on Linux)

–  A program which will either stand completely on its own,
containing all code necessary for its execution, or which will
request external libraries that it will depend on (and which
the loader must provide for the executable to run correctly)

•  Dynamic Linked Library (.dll) on Windows == Shared
Library aka Shared Object (.so) on Linux
–  Needs to be loaded by some other program in order for any

of the code to be executed. The library *may* have some
code which is automatically executed at load time (the
DllMain() on windows or init() on Linux). This is as opposed
to a library which executes none of its own code and only
provides code to other programs.

•  Static Library (.lib on Windows, .a on Linux)
–  Static libraries are just basically a collection of object files,

with some specific header info to describe the organization
of the files.

4

Loader Overview

5

Files on Disk

Code
Data
Import MyLib1
Import MyLib2
Import LibC

Code
Data

Import MyLib2
…

WickedSweetApp.exe

Code
Data

…

MyLib1.dll

MyLib2.dll

Virtual Memory
Address Space

Kernel

Userspace

WickedSweetApp.exe

Executable Loader

MyLib1.dll

MyLib2.dll

LibC

Stack

Heap

Common Windows PE File
Extensions

•  .exe - Executable file
•  .dll - Dynamic Link Library
•  .sys/.drv - System file (Kernel Driver)
•  .ocx - ActiveX control
•  .cpl - Control panel
•  .scr - Screensaver

•  Note: .lib files (Static Libraries) don't have
the same "DOS Header then PE Header"
format that the rest of these do.

6

Building Windows Executable, Dynamic
Linked Library, Static Library

7

PE Format (From OpenRCE.org)
You are here :D

8

Image by Ero Carrera www.openrce.org/reference_library/files/reference/PE%20Format.pdf

Further Reading

•  The definitions of all of the structures for a PE file are
in WINNT.h

•  An In-Depth Look into the Win32 Portable Executable
File Format Part 1 & 2 – An excellent set of reference
articles by Matt Pietrek (this is how I first learned)
http://msdn.microsoft.com/en-us/magazine/cc301805.aspx,
http://msdn.microsoft.com/en-us/magazine/cc301808.aspx

•  The official spec:
 http://www.microsoft.com/whdc/system/platform/firmware/pecoff.mspx

•  All the VisualStudio compiler options (note, some aren't in the GUI, you
have to add them manually): http://msdn.microsoft.com/en-us/
library/fwkeyyhe(v=VS.90).aspx

•  All the VS linker options: http://msdn.microsoft.com/en-us/
library/y0zzbyt4(v=VS.90).aspx 9

Your new best friends:
PEView and CFF Explorer

•  I like PEView (http://www.magma.ca/~wjr/PEview.zip) by
Wayne Radburn for looking at PE files. It’s
no frills and gives you a view very close to
what you would see if you were looking at
the structs in a program which was parsing
the file.

•  Once you've seen and understood stuff in
PEView, you can graduate to the much
more feature-full CFF Explorer by Daniel
Pistelli (it lets you hex edit the file or
disassemble code! :D)
(http://www.ntcore.com/exsuite.php)

10

Tools: WinDbg

•  We’re going to be using WinDbg for
basic userspace debugging (as
opposed to kernel debugging like in the
Intermediate x86 class)

11

Terminology

•  RVA - Relative Virtual Address. This indicates
some displacement relative to the start (base)
of a binary in memory.

•  So if the base is 0x80000000, and the
(absolute) Virtual Address was 0x80001000,
then the RVA would be 0x1000.

•  If the base is 0x80000000, and the VA was
0xC123000f, then the RVA would be
0x4123000f.

•  RVA = VA – Base
•  Windows uses RVAs extensively in the PE

format, unlike ELF which uses just absolute
VAs

12

13

You are here :D

Image by Ero Carrera

The MS-DOS File Header
(from winnt.h)

BLUE means the stuff we actually care about
typedef struct _IMAGE_DOS_HEADER { // DOS .EXE header!
 WORD e_magic; // Magic number!
 WORD e_cblp; // Bytes on last page of file!
 WORD e_cp; // Pages in file!
 WORD e_crlc; // Relocations!
 WORD e_cparhdr; // Size of header in paragraphs!
 WORD e_minalloc; // Minimum extra paragraphs needed!
 WORD e_maxalloc; // Maximum extra paragraphs needed!
 WORD e_ss; // Initial (relative) SS value!
 WORD e_sp; // Initial SP value!
 WORD e_csum; // Checksum!
 WORD e_ip; // Initial IP value!
 WORD e_cs; // Initial (relative) CS value!
 WORD e_lfarlc; // File address of relocation table!
 WORD e_ovno; // Overlay number!
 WORD e_res[4]; // Reserved words!
 WORD e_oemid; // OEM identifier (for e_oeminfo)!
 WORD e_oeminfo; // OEM information; e_oemid specific!
 WORD e_res2[10]; // Reserved words!
 LONG e_lfanew; // File address of new exe header!
 } IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;!

14

The DOS Header

•  e_magic is set to ASCII ‘MZ’ which is from
Mark Zbikowski who developed MS-DOS

•  For most Windows programs the DOS header
contains a stub DOS program which does
nothing but print out “This program cannot be
run in DOS mode”

•  The main thing we care about is the e_lfanew
field, which specifies a file offset where the
PE header can be found (a file pointer if you
will)

15

16

Image by Ero Carrera

NT Header or “PE Header”
(from winnt.h)

typedef struct _IMAGE_NT_HEADERS {
 DWORD Signature;
 IMAGE_FILE_HEADER FileHeader;
 IMAGE_OPTIONAL_HEADER32 OptionalHeader;

} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

•  Signature == 0x00004550 aka ASCII

string “PE” in little endian order in a
DWORD

•  Otherwise, just a holder for two other
embedded (not pointed to) structs

17

18

Image by Ero Carrera

File Header
(from winnt.h)

typedef struct _IMAGE_FILE_HEADER {!
 WORD Machine;!
 WORD NumberOfSections;!
 DWORD TimeDateStamp;!
 DWORD PointerToSymbolTable;!
 DWORD NumberOfSymbols;!
 WORD SizeOfOptionalHeader;!
 WORD Characteristics;!
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;!

19

File Header 2

•  The TimeDateStamp field is pretty
interesting. It’s a Unix timestamp (seconds
since epoc, where epoc is 00:00:00 UTC on
January 1st 1970) and is set at link time.
–  Can be used as a “unique version” for the given

file (the version compiled on Jan 1 2010 may or
may not be meaningfully different than that
compiled on Jan 2 2010)

–  Can be used to know when a file was linked
(useful for determining whether an attacker tool is
“fresh”, or correlating with other forensic
evidence, keeping in mind that attackers can
manipulate it)

20

File Header 3

•  Oh hay, Hoglund started using the
TimeDateStamp as a characteristic for
malware attribution (BlackHat Las
Vegas 2010, slides not posted yet)

•  NumberOfSections tells you how many
section headers there will be later

21

22

Image by Ero Carrera

File Header 4
(from winnt.h)

•  The Characteristics field is used to specify
things like:

#define IMAGE_FILE_EXECUTABLE_IMAGE 0x0002 !
// File is executable (i.e. no unresolved externel references).!
#define IMAGE_FILE_LINE_NUMS_STRIPPED 0x0004 !
// Line nunbers stripped from file.!
#define IMAGE_FILE_LARGE_ADDRESS_AWARE 0x0020 !
// App can handle >2gb addresses!
#define IMAGE_FILE_32BIT_MACHINE 0x0100 !
// 32 bit word machine.!
#define IMAGE_FILE_SYSTEM 0x1000 !
// System File. (Xeno: I don’t see that set on .sys files)
#define IMAGE_FILE_DLL 0x2000 !
// File is a DLL.!

23

(teeheehee)

(teeheehee)

File Header 4

•  SizeOfOptionalHeader can theoretically
be shrunk to exclude “data directory”
fields (talked about later) which the
linker doesn’t need to include. But I
don’t think it ever is in practice.

•  PointerToSymbolTable,
NumberOfSymbols not used anymore
now that debug info is stored in
separate file

24

25

Image by Ero Carrera

typedef struct _IMAGE_OPTIONAL_HEADER {!
 WORD Magic;!
 BYTE MajorLinkerVersion;!
 BYTE MinorLinkerVersion;!
 DWORD SizeOfCode;!
 DWORD SizeOfInitializedData;!
 DWORD SizeOfUninitializedData;!
 DWORD AddressOfEntryPoint;!
 DWORD BaseOfCode;!
 DWORD BaseOfData;!
 DWORD ImageBase;!
 DWORD SectionAlignment;!
 DWORD FileAlignment;!
 WORD MajorOperatingSystemVersion;!
 WORD MinorOperatingSystemVersion;!
 WORD MajorImageVersion;!
 WORD MinorImageVersion;!
 WORD MajorSubsystemVersion;!
 WORD MinorSubsystemVersion;!
 DWORD Win32VersionValue;!
 DWORD SizeOfImage;!
 DWORD SizeOfHeaders;!
 DWORD CheckSum;!
 WORD Subsystem;!
 WORD DllCharacteristics;!
 DWORD SizeOfStackReserve;!
 DWORD SizeOfStackCommit;!
 DWORD SizeOfHeapReserve;!
 DWORD SizeOfHeapCommit;!
 DWORD LoaderFlags;!
 DWORD NumberOfRvaAndSizes;!
 IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];!
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;!

26

From winnt.h

Optional Header

•  It’s not at all optional ;)
•  AddressOfEntryPoint specifies the

RVA of where the loader starts
executing code once it’s completed
loading the binary. Don’t assume it just
points to the beginning of the .text
section, or even the start of main().

•  SizeOfImage is the amount of
contiguous memory that must be
reserved to load the binary into memory

27

Optional Header 2

•  SectionAlignment specifies that sections
(talked about later) must be aligned on
boundaries which are multiples of this
value. E.g. if it was 0x1000, then you might
expect to see sections starting at 0x1000,
0x2000, 0x5000, etc.

•  FileAlignment says that data was written
to the binary in chunks no smaller than this
value. Some common values are 0x200
(512, the size of a HD sector), and 0x80
(not sure what the significance is)

28

Optional Header 3

•  ImageBase specifies the preferred virtual memory location
where the beginning of the binary should be placed.

•  Microsoft recommends developers “rebase” DLL files. That is,
picking a non-default memory address which will not conflict
with any of the other libraries which will be loaded into the same
memory space.

•  If the binary cannot be loaded at ImageBase (e.g. because
something else is already using that memory), then the loader
picks an unused memory range. Then, every location in the
binary which was compiled assuming that the binary was loaded
at ImageBase must be fixed by adding the difference between
the actual ImageBase minus desired ImageBase.

•  The list of places which must be fixed is kept in a special
“relocations” (.reloc) section.

•  This is because MS doesn’t support position-independent code

29

Optional Header 4
•  DLLCharacteristics specifies some important security options like

ASLR and non-executable memory regions for the loader, and the
effects are not limited to DLLs.

•  #define IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE 0x0040 // DLL can move.!
•  #define IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY 0x0080 // Code Integrity Image!
•  #define IMAGE_DLLCHARACTERISTICS_NX_COMPAT 0x0100 // Image is NX compatible!
•  #define IMAGE_DLLCHARACTERISTICS_NO_SEH 0x0400 // Image does not use SEH. No SE handler may reside in this image
•  IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE is set when linked

with the /DYNAMICBASE option. This is the flag which tells the OS
loader that this binary supports ASLR. Must be used with the /FIXED:NO
option for .exe files otherwise they won't get relocation information.

•  IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY says to
check at load time whether the digitally signed hash of the binary
matches.

•  IMAGE_DLLCHARACTERISTICS_NX_COMPAT is set with the /
NXCOMPAT linker option, and tells the loader that this image is
compatible with Data Execution Prevention (DEP) and that non-
executable sections should have the NX flag set in memory (we learn
about NX in the Intermediate x86 class)

•  IMAGE_DLLCHARACTERISTICS_NO_SEH says that this binary
never uses structured exception handling, and therefore no default
handler should be created (because in the absence of other options
that SEH handler is potentially vulnerable to attack.)

30

Security-Relevant Linker Options
•  /DYNAMICBASE – Mark the properties to indicate that this

executable will work fine with Address Space Layout
Randomization (ASLR)

•  /FIXED:NO – This will force the linker to generate relocations
information for an executable, so that it is capable of having its
base address modified by ASLR (otherwise usually .exe files
don't have relocations information, and therefore can't be moved
around in memory)

•  /NXCOMPAT – Mark the properties to indicate that this
executable will work fine with Data Execution Protection (which
marks data memory regions such as the stack and heap as non-
executable). DEP is just MS's name for utilizing the NX/XD bit to
mark memory pages as non-executable (Which we'll talk about
more in the Intermediate x86 class)

•  /SAFESEH – Safe Structured Exception Handling. Enforces that
the only SEH things you can use are ones which are specified in
the binary (it will automatically add any ones defined in your
code to a list that will be talked about later)

31

ASLR & DEP/NX

32

ASLR

DEP/NX
Generate
Relocations

ASLR & DEP/NX in the Binary

33

ASLR

DEP/NX

Relocations

34

Image by Ero Carrera

DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES]!

#define IMAGE_NUMBEROF_DIRECTORY_ENTRIES 16!
(from winnt.h) !
!
Therefore, while FileHeader.SizeOfOptionalHeader
could technically change, in practice it’s fixed!

Optional Header 3

•  The type of DataDirectory[16] is
IMAGE_DATA_DIRECTORY

typedef struct _IMAGE_DATA_DIRECTORY {!
 DWORD VirtualAddress;!
 DWORD Size;!
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;!

•  VirtualAddress is a RVA pointer to some
other structure of the given Size

35

Optional Header 4
(from winnt.h)

•  There is a predefined possible structure for each index in DataDirectory[]
!
#define IMAGE_DIRECTORY_ENTRY_EXPORT 0 // Export Directory!
#define IMAGE_DIRECTORY_ENTRY_IMPORT 1 // Import Directory!
#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2 // Resource Directory!
#define IMAGE_DIRECTORY_ENTRY_EXCEPTION 3 // Exception Directory!
#define IMAGE_DIRECTORY_ENTRY_SECURITY 4 // Security Directory!
#define IMAGE_DIRECTORY_ENTRY_BASERELOC 5 // Base Relocation Table!
#define IMAGE_DIRECTORY_ENTRY_DEBUG 6 // Debug Directory!
// IMAGE_DIRECTORY_ENTRY_COPYRIGHT 7 // (X86 usage)!
#define IMAGE_DIRECTORY_ENTRY_ARCHITECTURE 7 // Architecture Specific Data!
#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR 8 // RVA of GP!
#define IMAGE_DIRECTORY_ENTRY_TLS 9 // TLS Directory!
#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG 10 // Load Configuration Directory!
#define IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT 11 // Bound Import Directory in headers!
#define IMAGE_DIRECTORY_ENTRY_IAT 12 // Import Address Table!
#define IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT 13 // Delay Load Import Descriptors!
#define IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR 14 // COM Runtime descriptor!
!

•  We will return to each entry in the DataDirectory[] later.
•  Note that while the array is 16 elements, only 15 (0-14) are defined.

36

37

typedef struct _IMAGE_DOS_HEADER { // DOS .EXE header!
 WORD e_magic; // Magic number!
 WORD e_cblp; // Bytes on last page of file!
 WORD e_cp; // Pages in file!
 WORD e_crlc; // Relocations!
 WORD e_cparhdr; // Size of header in paragraphs!
 WORD e_minalloc; // Minimum extra paragraphs needed!
 WORD e_maxalloc; // Maximum extra paragraphs needed!
 WORD e_ss; // Initial (relative) SS value!
 WORD e_sp; // Initial SP value!
 WORD e_csum; // Checksum!
 WORD e_ip; // Initial IP value!
 WORD e_cs; // Initial (relative) CS value!
 WORD e_lfarlc; // File address of relocation table!
 WORD e_ovno; // Overlay number!
 WORD e_res[4]; // Reserved words!
 WORD e_oemid; // OEM identifier (for e_oeminfo)!
 WORD e_oeminfo; // OEM information; e_oemid specific!
 WORD e_res2[10]; // Reserved words!
 LONG e_lfanew; // File address of new exe header!
 } IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;!

Pop quiz, hot shot. Which fields
do we even care about, and why?

Sections

•  Sections group portions of code or data
(Von Neumann sez: “What’s the
difference?! :P”) which have similar
purpose, or should have similar memory
permissions (remember the linking
merge option? That would be for
merging sections with "similar memory
permissions")

38

Sections 2
•  Common section names:
•  .text = Code which should never be paged out of memory

to disk
•  .data = read/write data (globals)
•  .rdata = read-only data (strings)
•  .bss = (Block Started by Symbol or Block Storage

Segment or Block Storage Start depending on who you
ask (the CMU architecture book says the last one))

•  MS spec says of .bss “Uninitialized data (free format)”
which is the same as for ELF.

•  In practice, the .bss seems to be merged into the .data
section by the linker for the binaries I’ve looked at

•  .idata = import address table (talked about later). In
practice, seems to get merged with .text or .rdata

39

Sections 3

•  PAGE* = Code/data which it’s fine to page
out to disk if you’re running low on memory
(not in the spec, seems to be used
primarily for kernel drivers)

•  .reloc = Relocation information for where
to modify hardcoded addresses which
assume that the code was loaded at its
preferred base address in memory

•  .rsrc = Resources. Lots of possible stuff
from icons to other embedded binaries.
The section has structures organizing it
sort of like a filesystem.

40

41

Image by Ero Carrera

Section Header
(from winnt.h)

#define IMAGE_SIZEOF_SHORT_NAME 8
!
typedef struct _IMAGE_SECTION_HEADER {!
 BYTE Name[IMAGE_SIZEOF_SHORT_NAME];!
 union {!
 DWORD PhysicalAddress;!
 DWORD VirtualSize;!
 } Misc;!
 DWORD VirtualAddress;!
 DWORD SizeOfRawData;!
 DWORD PointerToRawData;!
 DWORD PointerToRelocations;!
 DWORD PointerToLinenumbers;!
 WORD NumberOfRelocations;!
 WORD NumberOfLinenumbers;!
 DWORD Characteristics;!
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;!

42

Refresher: C Unions
union {!
 DWORD PhysicalAddress;!
 DWORD VirtualSize;!
 } Misc;
•  Used to store multiple different interpretations

of the same data in the same location.
•  Accessed as if the union were a struct. So if

you have
!IMAGE_SECTION_HEADER sectHdr;!
 You don’t access sectHdr.VirtualSize,
you access sectHdr.Misc.VirtualSize

•  We will only ever consider it as the VirtualSize
field.

43

Section Header 2

•  Name[8] is a byte array of ASCII
characters. It is NOT guaranteed to be
null-terminated. So if you’re trying to
parse a PE file yourself you need to be
aware of that.

•  VirtualAddress is the RVA of the section
relative to OptionalHeader.ImageBase

•  PointerToRawData is a relative offset
from the beginning of the file which says
where the actual section data is stored.

44

Section Header 3

•  There is an interesting interplay between
Misc.VirtualSize and SizeOfRawData. Sometimes
one is larger, and other times the opposite.

•  Why would VirtualSize be greater than
SizeOfRawData? This indicates that the section is
allocating more memory space than it has data
written to disk.

•  Think about the .bss portion of the .rdata section. It
just needs a bunch of space for variables. The
variables are uninitialized, which is why they don’t
have to be in the file. Therefore the loader can just
give a chunk of memory to store variables in, by
just allocating VirtualSize worth of data. Thus you
get a smaller binary.

45

 …

 …

 …

VirtualSize > SizeOfRawData
(on your own slide, draw the correspondence between the 0x200 in the first picture and the 0x300 in the second)

46

SectionHeader
Misc.VirtualSize = 0x300
SizeOfRawData = 0x200
PointerToRawData = 0x500

Section Data
…

Section On Disk Section In Memory

0x200

 …

 …

 …

SectionHeader
Misc.VirtualSize = 0x300
SizeOfRawData = 0x200
PointerToRawData = 0x500
VirtualAddress = 0x1000

Section Data From Disk
…

Zero-initialized data

0x300

0x1000

0

0x500

0

Section Header 4

•  Why would SizeOfRawData be greater than
VirtualSize?

•  Remember that PE has the notion of file
alignment.(OptionalHeader.FileAlignment)Therefore, if
you had a FileAlignment of 0x200, but you only
had 0x100 bytes of data, the linker would have
had to write 0x100 bytes of data followed by
0x100 bytes of padding.

•  By having the VirtualSize < SizeOfRawData,
the loader can say “ok, well I see I really only
need to allocate 0x100 bytes of memory and
read 0x100 bytes of data from disk.”

47

 …

 …

 …

VirtualSize < SizeOfRawData
(on your own slide, draw the correspondence between the 0x200 in the first picture and the 0x100 in the second))

48

Section Header
VirtualSize = 0x100
SizeOfRawData = 0x200
PointerToRawData = 0x500

Section Data
…
Padding

Section On Disk Section In Memory

0x200

 …

 …

 …

Section Header
VirtualSize = 0x100
SizeOfRawData = 0x200
PointerToRawData = 0x500
VirtualAddress = 0x1000

Section Data
…

0x100
0x500

0

0x1000

0

Section Header 5
(from winnt.h)

•  Characteristics tell you something about the
section. Examples:

#define IMAGE_SCN_CNT_CODE 0x00000020 !
// Section contains code.!
#define IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040 !
// Section contains initialized data.!
#define IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080 !
// Section contains uninitialized data.!
#define IMAGE_SCN_MEM_DISCARDABLE 0x02000000 !
// Section can be discarded.!
#define IMAGE_SCN_MEM_NOT_PAGED 0x08000000 !
// Section is not pageable.!
#define IMAGE_SCN_MEM_SHARED 0x10000000 !
// Section is shareable.!
#define IMAGE_SCN_MEM_EXECUTE 0x20000000 !
// Section is executable.!
#define IMAGE_SCN_MEM_READ 0x40000000 !
// Section is readable.!
#define IMAGE_SCN_MEM_WRITE 0x80000000 !
// Section is writeable.!
! 49

Section Header

•  PointerToRelocations,
PointerToLinenumbers,
NumberOfRelocations,
NumberOfLinenumbers aren’t used anymore

50

Renaming Sections

51

Merge Sections

52

BEFORE

AFTER

typedef struct _IMAGE_FILE_HEADER {!
 WORD Machine;!
 WORD NumberOfSections;!
 DWORD TimeDateStamp;!
 DWORD PointerToSymbolTable;!
 DWORD NumberOfSymbols;!
 WORD SizeOfOptionalHeader;!
 WORD Characteristics;!
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;!

53

Which fields do we even
care about, and why?

Static Linking vs Dynamic Linking

•  With static linking, you literally just include a
copy of every helper function you use inside the
executable you're generating.

•  Dynamic linking is when you resolve pointers to
functions inside libraries at runtime.

•  Needless to say, a statically linked executable
is bloated compared to a dynamically linked
one. But on the other hand, it's standalone,
without outside dependencies. But on the other
other hand, patches or fixes to libraries are not
applied to the statically linked binary until it's re-
linked, so it can potentially have vulnerable
code long after a library vulnerability is patched.

•  Going to learn a bunch about how dynamic
linking works, in service to learning a bit about
how it is abused.

54

Calling Imported Functions

•  As a programmer, this is transparent to
you, but what sort of assembly does the
compiler actually generate when you
call an imported function like printf()?

•  We can use the handy-dandy
HelloWorld.c to find out quickly.

printf("Hello World!\n");!
004113BE 8B F4 ! !mov esi,esp !
004113C0 68 3C 57 41 00 !push 41573Ch !
004113C5 FF 15 BC 82 41 00 !call dword ptr ds:[004182BCh] !
!
(Note to self, show imports in PEView too)!

55

56

Image by Ero Carrera

57

Image by Ero Carrera

Import Descriptor
(from winnt.h)

typedef struct _IMAGE_IMPORT_DESCRIPTOR {!
 union {!
 DWORD Characteristics; // 0 for terminating null import descriptor!
 DWORD OriginalFirstThunk; // RVA to original unbound IAT (PIMAGE_THUNK_DATA)!

 };!
 DWORD TimeDateStamp; // 0 if not bound,!
 // -1 if bound, and real date\time stamp!

 // in IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT (new BIND)!
 // O.W. date/time stamp of DLL bound to (Old BIND)!
!
 DWORD ForwarderChain; // -1 if no forwarders!

 DWORD Name;!
 DWORD FirstThunk; // RVA to IAT (if bound this IAT has actual addresses)!
} IMAGE_IMPORT_DESCRIPTOR;!

!

•  While the things in blue are the fields filled in for the most common case, we
will actually have to understand everything for this structure, because you
could run into all the variations.

58

I think they meant “INT”

Import Descriptor 2

•  OriginalFirstThunk (“is badly named”
according to Matt Pietrek) is the RVA of
the Import Name Table (INT). It’s so
named because the INT is an array of
IMAGE_THUNK_DATA structs. So this
field of the import descriptor is trying to
say that it’s pointing at the first entry in
that array.

59

Import Descriptor 3

•  FirstThunk like OriginalFirstThunk except
that instead of being an RVA which points
into the INT, it’s pointing into the Import
Address Table (IAT). The IAT is also an
array of IMAGE_THUNK_DATA structures
(they’re heavily overloaded as we’ll see).

•  Name is just the RVA which will point at
the specific name of the module which
imports are taken from (e.g. hal.dll,
ntdll.dll, etc)

60

61

Image by Ero Carrera

IMAGE_THUNK_DATA
(from winnt.h)

typedef struct _IMAGE_THUNK_DATA32 {!
 union {!
 DWORD ForwarderString; // PBYTE !
 DWORD Function; // PDWORD!
 DWORD Ordinal;!
 DWORD AddressOfData; // PIMAGE_IMPORT_BY_NAME!
 } u1;!
} IMAGE_THUNK_DATA32;!
!

•  We just learned that both the INT (pointed to by
OriginalFirstThunk) and the IAT (pointed to by FirstThunk) point
at arrays of IMAGE_THUNK_DATA32s.

•  The INT and IAT IMAGE_THUNK_DATA32 structures are all
interpreted as pointing at IMAGE_IMPORT_BY_NAME
structures to begin with. That is they are u1.AddressOfData.
This is actually the RVA of an IMAGE_IMPORT_BY_NAME
structure.

62

IMAGE_IMPORT_BY_NAME
(from winnt.h)

typedef struct _IMAGE_IMPORT_BY_NAME {!
 WORD Hint;!
 BYTE Name[1];!
} IMAGE_IMPORT_BY_NAME, *PIMAGE_IMPORT_BY_NAME;
•  Hint specifies a possible “ordinal” of an

imported function. Talked about later,
when we talk about exports, but basically
it’s just a way to look up the function by an
index rather than a name.

•  Name on the other hand is to look up the
function by name. It’s not one byte long,
it’s a null terminated ASCII string which
follows the hint. But usually it's just null in
our examples.

63

On the impersistence of being: INT vs IAT

•  The INT IMAGE_THUNK_DATA structures
are always interpreted as pointing at
IMAGE_IMPORT_BY_NAME structures,
that is they are u1.AddressOfData, the
RVA of an IMAGE_IMPORT_BY_NAME.

•  The IAT IMAGE_THUNK_DATA structures
start out are all interpreted as the
u1.AddressOfData, but once the OS
loader resolves each import, it overwrites
the IMAGE_THUNK_DATA structure with
the actual virtual address of the start of the
function. Therefore it is subsequently
interpreted as u1.Function.

64

Graphical style borrowed from the Matt Pietrek articles
65

OriginalFirstThunk
TimeDateStamp
ForwarderChain
Name
FirstThunk

0
0
0
0
0

…

IMAGE_IMPORT_DESCRIPTOR

Zero-filled
IMAGE_IMPORT_DESCRIPTOR
entry terminates the array

ntoskrnl.exe

Import Names Table
(IMAGE_THUNK_DATA array)

Import Address Table
(IMAGE_THUNK_DATA array)

0x014B, IoDeleteSymbolicLink

0x040B, RtlInitUnicodeString

0x01DA, IofCompleteRequest

Array of IMAGE_IMPORT_BY_NAME
Structures stored wherever in the file

Import data
structures
ON DISK

Graphical style borrowed from the Matt Pietrek articles
66

OriginalFirstThunk
TimeDateStamp
ForwarderChain
Name
FirstThunk

0
0
0
0
0

…

IMAGE_IMPORT_DESCRIPTOR

Zero-filled
IMAGE_IMPORT_DESCRIPTOR
entry terminates the array

ntoskrnl.exe

Import Names Table
(IMAGE_THUNK_DATA array)

Import Address Table
(IMAGE_THUNK_DATA array)

0x014B, IoDeleteSymbolicLink

0x040B, RtlInitUnicodeString

0x01DA, IofCompleteRequest

Array of IMAGE_IMPORT_BY_NAME
Structures stored wherever in the file

Import data
structures
IN MEMORY
AFTER IMPORTS
RESOLVED

IAT entries now
point to the full
virtual addresses
where the
functions are
found in the other
modules (just
ntoskrnl.exe in
this case)

Look through null.sys
(note to self: start from the data directory)

67

Graphical style borrowed from the Matt Pietrek articles
68

OriginalFirstThunk
TimeDateStamp
ForwarderChain
Name
FirstThunk

OriginalFirstThunk
TimeDateStamp
ForwarderChain
Name
FirstThunk

…

IMAGE_IMPORT_DESCRIPTOR

ntoskrnl.exe

Import Names Table
(IMAGE_THUNK_DATA array)

Import Address Table
(IMAGE_THUNK_DATA array)

0x0001, ExReleaseFastMutex

0x004E, KfRaiseIrql

0x004D, KfLowerIrql

0x029D, MmLockPagableDataSection

0x01EE, KeCancelTimer

0x02BC, MmUnlockPagableImageSection

Array of IMAGE_IMPORT_BY_NAME
Structures stored wherever in the file

Import data
structures
ON DISK

HAL.dll

… …

Graphical style borrowed from the Matt Pietrek articles
69

OriginalFirstThunk
TimeDateStamp
ForwarderChain
Name
FirstThunk

OriginalFirstThunk
TimeDateStamp
ForwarderChain
Name
FirstThunk

…

IMAGE_IMPORT_DESCRIPTOR

ntoskrnl.exe

Import Names Table
(IMAGE_THUNK_DATA array)

Import Address Table
(IMAGE_THUNK_DATA array)

0x0001, ExReleaseFastMutex

0x004E, KfRaiseIrql

0x004D, KfLowerIrql

0x029D, MmLockPagableDataSection

0x01EE, KeCancelTimer

0x02BC, MmUnlockPagableImageSection

Array of IMAGE_IMPORT_BY_NAME
Structures stored wherever in the file

Import data
structures
IN MEMORY
AFTER IMPORTS
RESOLVED

HAL.dll

… …

IAT entries now
point to the full
virtual
addresses
where the
functions are
found in the
other modules

Look through beep.sys

70
nt then hal, no special significance, just sayin’

Look through beep.sys 2

71 hal then nt, no special significance, just sayin’ it’s
backwards from the previous

Lab: telnet.exe

•  telnet.exe was chosen because it has
only normal imports; no “bound” or
“delayed” imports as will be talked
about later

•  View imports with PEView
•  Open telnet.exe
•  View imports in memory by attaching

with WinDbg

72

Open WinDbg

73

From Start Menu

74

Mouse over to see
description of which
type of window it
opens up

75

76

77

78

Stop debugging

Step into Step over Step out

If “Source mode
on” is clicked,

when you step, it
will step one

source line at a
time (assuming

you have source)

If “Source mode
off” is clicked,
when you step,
it will step one
asm instruction

at a time

Restart debugging

Continue Set breakpoint
wherever the

cursor is currently

WinDbg breakpoints

•  bp <address> : Set breakpoint
–  Address can be number or human readable input

like “main” or “Example1:main”
•  bl : Breakpoints list
•  bd <bp ID> : Breakpoint disable

–  <bp ID> as given by first column of bl
•  be <bp ID> : Breakpoint enable

–  <bp ID> as given by first column of bl
•  bc <bp ID> : Breakpoint clear (delete)

–  Can do "bc *" to delete all breakpoints

81

X

Image by Ero Carrera

IAT Hooking

•  When the IAT is fully resolved, it is
basically an array of function pointers.
Somewhere, in some code path, there’s
something which is going to take an IAT
address, and use whatever’s in that
memory location as the destination of the
code it should call.

•  What if the “whatever’s in that memory
location” gets changed after the OS loader
is done? What if it points at attacker code?

82

IAT Hooking 2

•  Well, that would mean the attacker’s code
would functionally be “man-in-the-middle”ing
the call to the function. He can then change
parameters before forwarding the call on to the
original function, and filter results that come
back from the function, or simply never call the
original function, and send back whatever
status he pleases.
–  Think rootkits. Say you’re calling OpenFile. It

looks at the file name and if you’re asking for a file
it wants to hide, it simply returns “no file found.”

•  But how does the attacker change the IAT
entries? This is a question of assumptions
about where the attacker is.

83

IAT Hooking 3
•  In a traditional memory-corrupting exploit, the attacker is, by

definition, in the memory space of the attacked process, upon
successfully gaining arbitrary code execution. The attacker can
now change memory such as the IAT for this process only,
because remember (from OS class or Intermediate x86) each
process has a separate memory space.

•  If the attacker wants to change the IAT on other processes, he
must be in their memory spaces as well. Typically the attacker
will format some of his code as a DLL and then perform “DLL
Injection” in order to get his code in other process’ memory
space.

•  The ability to do something like DLL injection is generally a
prerequisite in order to leverage IAT hooking across many
userspace processes. In the kernel, kernel modules are
generally all sharing the same memory space with the kernel,
and therefore one subverted kernel module can hook the IAT of
any other modules that it wants.

84

DLL Injection

•  See http://en.wikipedia.org/wiki/
DLL_injection for more ways that this
can be achieved on Windows/*nix

•  We’re going to use the AppInit_DLLs
way of doing this, out of laziness

•  (Note: AppInit_DLLs' behavior has
changed in releases > XP, it now has to
be enabled with Administrator level
permissions.)

85

Lab: IAT hooking
•  http://www.codeproject.com/KB/vista/api-hooks.aspx

–  This will hook NtQuerySystemInformation(), which is what taskmgr.exe uses in
order to list the currently running processes. It will replace this with
HookedNtQuerySystemInformation(), which will hide calc.exe

–  I modified that code to use IAT hooking rather than inline (which is much simpler
actually)

•  Steps:
–  Compile AppInitHookIAT.dll
–  Place at C:\AppInitHookIAT.dll for simplicity
–  Use regedit.exe to add C:\AppInitHookIAT.dll as the value for the key

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT
\CurrentVersion\Windows\AppInit_DLLs (if there is already something there,
separate the entries with a comma)

–  Start calc.exe, start taskmgr.exe, confirm that calc.exe doesn't show up in the list
of running processes.

–  Remove C:\AppInitHookIAT.dll from AppInit_DLLs and restart taskmgr.exe.
–  Confirm calc.exe shows up in the list of running processes.
–  (This is a basic "userspace rootkit" technique. Because of this, all entries in this

registry key should always be looked upon with suspicion.)
86

Bound Imports

•  Import binding is a speed optimization. The
addresses of the functions are resolved at link
time, and then placed into the IAT.

•  The binding is done under the assumption of
specific versions of the DLL. If the DLL
changes, then all the IAT entries will be invalid.
But that just means you have to resolve them,
so you’re not much worse off than if you had
not used binding in the first place.

•  notepad.exe and a bunch of other stuff in C:
\WINDOWS\system32 are examples

87

88

X

X

Image by Ero Carrera

Missing from the picture
•  The bound import data directory entry points at an array of

IMAGE_BOUND_IMPORT_DESCRIPTORs, ending with an all-zeros
IMAGE_BOUND_IMPORT_DESCRIPTOR (like what was done with
IMAGE_IMPORT_DESCRIPTOR)

typedef struct _IMAGE_BOUND_IMPORT_DESCRIPTOR {
 DWORD TimeDateStamp;
 WORD OffsetModuleName;
 WORD NumberOfModuleForwarderRefs;
// Array of zero or more IMAGE_BOUND_FORWARDER_REF follows
} IMAGE_BOUND_IMPORT_DESCRIPTOR, *PIMAGE_BOUND_IMPORT_DESCRIPTOR;

typedef struct _IMAGE_BOUND_FORWARDER_REF {
 DWORD TimeDateStamp;
 WORD OffsetModuleName;
 WORD Reserved;
} IMAGE_BOUND_FORWARDER_REF, *PIMAGE_BOUND_FORWARDER_REF;

89

IMAGE_BOUND_IMPORT_DESCRIPTOR

•  TimeDateStamp is just the value from the
FileHeader as we would expect.

•  OffsetModuleName is not an RVA, it’s
the offset from the beginning of the first
IMAGE_BOUND_IMPORT_DESCRIPTOR

•  We are going to return to
NumberOfModuleForwarderRefs and
IMAGE_BOUND_FORWARDER_REF
after we learn about forwarded functions.

90

Notepad.exe’s IMAGE_BOUND_IMPORT_DESCRIPTOR array

91

Non-zero number of forwarder refs
Therefore this ntdll entry is a
IMAGE_BOUND_FORWARDER_REF
Not a
IMAGE_BOUND_IMPORT_DESCRIPTOR
… I didn’t notice it at first :)

Notepad.exe’s IAT with bound imports

92

Notepad.exe’s IMAGE_IMPORT_DESCRIPTOR array
with bound imports

93

How does one go about binding
imports?

•  BindImageEx API, if you want to make your own program to
bind your other programs (why?)

•  Windows Installer “BindImage” action – ideal case, you bind at
install time, so it will be correct until the next update of Windows.

•  Bind.exe? Can’t find it on my dev VM (VC++ 9.0, i.e. 2008
edition) but there’s plenty of references to it in older documents
(e.g. VC++ 6.0). Seems to be deprecated.

•  However, we can use CFF Explorer, so let's do that to our hello
world quick:
–  Open HelloWorld.exe in CFF Explorer.exe
–  Goto Data Directories [x] and note the zeros for Bound Import

Directory RVA/Size.
–  Goto Import Directory and select kernel32.dll. Note the values in

the FTs(IAT) column.
–  Go to "Rebuilder" helper plugin, select "Bind Import Table" only and

then select "Rebuild"
–  Go back to the Data Directories to see the non-zero Bound Import

Directory RVA and go to the Import Directory area to see the
absolute VAs for the imported function addresses.

94

Binding vs. ASLR:
THERE CAN BE ONLY ONE!
•  Address Space Layout Randomization

makes binding pointless, because if the
ASLR is doing its job, the bindings should
be invalidated most of the time. So you
end up being forced to resolve imports at
load time anyway, and therefore any time
you took to try and validate bound imports
was pointless, so you may as well just not
even use them.

•  This is why I’m pretty sure binding is
(going to be?) deprecated, and why
bind.exe disappeared.

95

http://www.elfwood.com/
~tommartin/Highlander.
3294669.html

typedef struct _IMAGE_OPTIONAL_HEADER {!
 WORD Magic;!
 BYTE MajorLinkerVersion;!
 BYTE MinorLinkerVersion;!
 DWORD SizeOfCode;!
 DWORD SizeOfInitializedData;!
 DWORD SizeOfUninitializedData;!
 DWORD AddressOfEntryPoint;!
 DWORD BaseOfCode;!
 DWORD BaseOfData;!
 DWORD ImageBase;!
 DWORD SectionAlignment;!
 DWORD FileAlignment;!
 WORD MajorOperatingSystemVersion;!
 WORD MinorOperatingSystemVersion;!
 WORD MajorImageVersion;!
 WORD MinorImageVersion;!
 WORD MajorSubsystemVersion;!
 WORD MinorSubsystemVersion;!
 DWORD Win32VersionValue;!
 DWORD SizeOfImage;!
 DWORD SizeOfHeaders;!
 DWORD CheckSum;!
 WORD Subsystem;!
 WORD DllCharacteristics;!
 DWORD SizeOfStackReserve;!
 DWORD SizeOfStackCommit;!
 DWORD SizeOfHeapReserve;!
 DWORD SizeOfHeapCommit;!
 DWORD LoaderFlags;!
 DWORD NumberOfRvaAndSizes;!
 IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];!
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;!

96

From winnt.h

Which fields do we even
care about, and why?

Delay Loaded DLLs

•  Specifies that libraries will not even be
loaded into the memory space until the
first time they are used. This can
potentially be a good thing to do for
code

•  Setting this option will generate extra
information separate from normal DLL
loading information to the support the
delayed loading.

•  Described in detail in the PE section
97

98

99

X

X
X

Image by Ero Carrera

Delayed Imports
from DelayImp.H, dunno where he got _IMAGE_DELAY_IMPORT_DESCRIPTOR from
typedef struct ImgDelayDescr {!
DWORD grAttrs; // attributes!
RVA rvaDLLName; // RVA to dll name!

RVA rvaHmod; // RVA of module handle!
RVA rvaIAT; // RVA of the IAT!
RVA rvaINT; // RVA of the INT!
RVA rvaBoundIAT; // RVA of the optional bound IAT!
RVA rvaUnloadIAT; // RVA of optional copy of original IAT!
DWORD dwTimeStamp; // 0 if not bound,!

 // O.W. date/time stamp of DLL bound to (Old BIND)!
} ImgDelayDescr, * PImgDelayDescr;!
!
•  We care about rvaIAT because it points at a separate IAT where stuff gets filled in as needed.
•  Also rvaDLLName just because, you know, it tells us which DLL this is about.
•  You can look up the rest on your own later (I recommend you check

http://msdn.microsoft.com/en-us/magazine/cc301808.aspx), but really these fields are just there for the
dynamic linker’s benefit, so we don’t care enough to go into any of them. The main takeaway will be about
the procedure for resolving delayed imports.

100

The Delay-Loaded IAT
•  We care about rvaIAT because this points to a separate IAT for

delay-loaded functions only. But it’s that IAT which is
interesting.

•  Initially the delay load IAT holds full virtual addresses of stub
code. So the first time you call the delay-loaded function, it first
calls the stub code.

•  If necessary, the stub code loads the module which contains the
function you want to call. Then it and resolves the address of the
function within the module. It fills that address into the delay
load IAT, and then calls the desired function. So the second
time the code calls the function, it bypasses the dynamic
resolution process, and just goes directly to the desired function.

•  You can look up the rest on your own later (I recommend you
check
http://msdn.microsoft.com/en-us/magazine/cc301808.aspx), but
these fields are mostly just there for the dynamic linker’s
benefit, so we don’t care enough to go into them.

101

Delay Loading
hello

hi
how you doing?

fine, thanks.

102

.text
…
call [0x103e6c4] <DrawThemeBackground>
…
call [0x103e6c4] <DrawThemeBackground>
…

stub code
0103540a <DLL Loading and Function Resolution Code>
…
01035425 mov eax,offset mspaint+0x3e6c4 (0103e6c4)
0103542a jmp mspaint+0x3540a (0103540a)

Delay Load IAT
…
0103e6c4
…

1

0x1035425 (DrawThemeBackground)

.text
…
call [0x103e6c4] <DrawThemeBackground>
…
call [0x103e6c4] <DrawThemeBackground>
…

stub code
0103540a <DLL Loading and Function Resolution Code>
…
01035425 mov eax,offset mspaint+0x3e6c4 (0103e6c4)
0103542a jmp mspaint+0x3540a (0103540a)

Delay Load IAT
…
0103e6c4
…

Delay Loading
hello

hi
how you doing?

fine, thanks.

103

0x1035425 (DrawThemeBackground)

2

.text
…
call [0x103e6c4] <DrawThemeBackground>
…
call [0x103e6c4] <DrawThemeBackground>
…

stub code
0103540a <DLL Loading and Function Resolution Code>
…
01035425 mov eax,offset mspaint+0x3e6c4 (0103e6c4)
0103542a jmp mspaint+0x3540a (0103540a)

Delay Load IAT
…
0103e6c4
…

UxTheme.dll
…
5ad72bef <DrawThemeBackground>

Delay Loading
hello

hi
how you doing?

fine, thanks.

104

0x1035425 (DrawThemeBackground)

3

0x5ad72bef

Delay Loading
hello

hi
how you doing?

fine, thanks.

105

.text
…
call [0x103e6c4] <DrawThemeBackground>
…
call [0x103e6c4] <DrawThemeBackground>
…

stub code
0103540a <DLL Loading and Function Resolution Code>
…
01035425 mov eax,offset mspaint+0x3e6c4 (0103e6c4)
0103542a jmp mspaint+0x3540a (0103540a)

Delay Load IAT
…
0103e6c4
…

0x1035425 (DrawThemeBackground)

UxTheme.dll
…
5ad72bef <DrawThemeBackground>

4

0x5ad72bef

mspaint’s delayed import descriptors

106

Although the “RVA to Bound IAT” is filled in, this feature was reserved for
a future version of bind, but I don’t think it ever got implemented
before deprecation so it just points at some nulls.

mspaint’s delayed IAT

107
These are virtual addresses. Since the ImageBase for mspaint is 0x1000000 and the
SizeOfImage is 0x57000, that means these virtual addresses start out inside
mspaint itself. Each one just points at some stub code to call the dynamic linker.

mspaint’s delayed imports in
memory (some resolved, some not)

108

Resolved Not Resolved

Start of stub code
Note to self, walk the stub code a bit in the debugger

Dependency Walker, just ‘cause
hehe depends.exe…that’s right, potty humor, I went there

109

Delay load Forwarded-to DLL Forwarded-to Function

Runtime Importing
•  Just for completeness, I should mention LoadLibrary() and

GetProcAddress().
•  LoadLibrary() can be called to dynamically load a DLL into

the memory space of the process
•  GetProcAddress() gives the address of a function

specified by name, or by ordinal (which we will talk about
soon). This address can then be used as a function
pointer.

•  Remember when we were seeing delay-loaded DLLs, and
the dynamic linker "somehow" loaded the DLL and then
resolved the function address? It's actually using
LoadLibrary() and GetProcAddress().

•  These functions are often abused to make it so that which
functions the malware actually uses cannot be determined
simply by looking at the INT. Rather, the malware will
have the names of the imported libraries and functions
obfuscated somewhere in the data, and then will
deobfuscate them and dynamically resolve them before
calling the imported functions. 110

Uhg, finally done with imports. Treat yourself to some fail.

111

Exporting Functions & Data
•  For a library to be useful, other code which wants to use

its functions must be able to import them, as already
talked about.

•  There are two options to export functions and data. They
can be exported by name (where the programmer even
has the option to call the exported name something
different than he himself calls it), or they can be exported
by ordinal.

•  An ordinal is just an index, and if a function is exported by
ordinal, it can only be imported by ordinal. While exporting
by ordinal saves space, by not having extra strings for the
names of symbols, and time by not having to search the
strings, it also puts more work on the programmer which
wants to import the export. But it can also be a way to
make a private (undocumented) API more private.

112

113

X

X

X
X

Image by Ero Carrera

Exports
from winnt.h

typedef struct _IMAGE_EXPORT_DIRECTORY {!
 DWORD Characteristics;!
 DWORD TimeDateStamp;!
 WORD MajorVersion;!
 WORD MinorVersion;!
 DWORD Name;!
 DWORD Base;!
 DWORD NumberOfFunctions;!
 DWORD NumberOfNames;!
 DWORD AddressOfFunctions; // RVA from base of image!
 DWORD AddressOfNames; // RVA from base of image!
 DWORD AddressOfNameOrdinals; // RVA from base of image!
} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;!

114

Exports 2

•  The TimeDateStamp listed here is what’s actually
checked against when the loader is trying to
determine if bound imports are out of date for
instance. Can be different from the one in the File
Header (see ntdll.dll). Presumably (wasn’t able to
confirm), the linker only updates this if there are
meaningful changes to the RVAs or order for
exported functions. That way, the TimeDateStamp
“version” can stay backwards compatible as long
as possible.

•  NumberOfFunctions could theoretically be
different from NumberOfNames, but in practice
they should be the same. By knowing the number
of names, when searching for an import by name,
the loader can do a binary search.

115

Exports 3

•  Base is the number to subtract from an ordinal to
get the zero-indexed offset into the
AddressOfFunctions array. Because ordinals start
at 1 by default, this is usually 1. However ordinals
could start at 10 if the programmer wants them to,
and therefore Base would then be set to 10.

•  AddressOfFunctions is an RVA which points to the
beginning of an array which holds DWORD RVAs
which point to the start of the exported functions.
The pointed-to array should be
NumberOfFunctions entries long. This would be the
Export Address Table (EAT) like the flip side of the
Import Address Table (IAT).

•  Eat! I atè! :P

116

Exports 4

•  AddressOfNames is an RVA which points to
the beginning of an array which holds DWORD
RVAs which point to the strings which specify
function names. The pointed-to array should be
NumberOfNames entries long. This would be
the Export Names Table (ENT) like the flipside
of the Import Names Table (INT).

•  AddressOfNameOrdinals is an RVA which
points to the beginning of an array which holds
WORD (16 bit) sized ordinals. The entries in
this array are already zero-indexed indices into
the EAT, and therefore are unaffected by Base.

117

Ordinal says what?
•  When importing by name, like I said, it can do a binary search

over the strings in the ENT, because nowadays, they’re
lexically sorted. “Back in the day” they weren’t sorted. Back
then, it was strongly encouraged to “import by ordinal”, that is,
you could specify “I want ordinal 5 in kernel32.dll” instead of “I
want AddConsoleAliasW in kernel32.dll”, because if the names
aren’t sorted, you’re doing a linear search. You can still import
by ordinal if you choose, and that way your binary/library will
load a bit faster.

•  Even if you’re importing by name, it is actually just finding the
index in the ENT, and then selecting the same index in the
AddressOfNameOrdinals, and then reading the value from the
AddressOfNameOrdinals to use as an index into the EAT.

•  Generally speaking, the downside of importing by ordinal is that
if the ordinals change, your app breaks. That said, the developer
who’s exporting by ordinal has incentive to not change them,
unless he wants those apps to break (e.g. to force a deprecated
API to not be used any more).

118

Talk the walk
(search for import EditOwnerInfo by name

and then by ordinal)

119

Characteristics

TimeDateStamp

MajorVersion

MinorVersion

Name

Base

NumberOfFunctions

NumberOfNames

AddressOfFunctions

AddressOfNames

AddressOfNameOrdinals

IMAGE_EXPORT_DIRECTORY

DLLMain EditAuditInfo EditOwnerInfo EditPermissionInfo FMExtensionProcW SedDiscretionaryActEditor

0x00013913 0x000138E4 0x000138F2 0x00013900 0x0001391B 0x0001392C

0x0000323A 0x00004010 0x00003248 0x00004BC6 0x00004ED6 0x0000590A

0x0003 0x0000 0x0001 0x0002 0x0005 0x0006

EAT

ENT

NameOrdinals

Modified graphical style borrowed from
Matt Pietrek articles

ACLEDIT.dll

(note the lexical order, note to self, talk about lexical ordering necessitating the ordinal table)

How does one go about specifying
an export?

•  http://msdn.microsoft.com/en-us/library/
hyx1zcd3(VS.80).aspx

•  “There are three methods for exporting
a definition, listed in recommended
order of use:
– The __declspec(dllexport) keyword in the

source code
– An EXPORTS statement in a .def file
– An /EXPORT specification in a LINK

command”
120

Where to specify a .def file

121

Forwarded Exports

•  There is an option to forward a function from
one module to be handled by another one (e.g.
it might be used if code was refactored to move
a function to a different module, but you wanted
to maintain backward compatibility.)

•  As we just saw, normally AddressOfFunctions
points to an array of RVAs which point at code.
However, if a RVA in that array of RVAs points
into the exports section (as defined by the base
and size given in the data directory entry), then
the RVA will actually be pointing at a string of
the form DllToForwardTo.FunctionName

122

Kernel32.dll forwarded (to ntdll.dll) exports

123

How does one go about forwarding
exports?

•  Statement in .def file of the form
EXPORTS
FunctionAlias=OtherDLLName.RealFunction
•  or /export linker option
•  /export:FunctionAlias=OtherDLLName.RealFunction

•  Can even specify a linker comment in
the code with

•  #pragma comment(linker, "/export:FunctionAlias=OtherDLLName.RealFunction")

124

Relevance to Stuxnet
•  Stuxnet used forwarded exports for the

93 of 109 exports in s7otbxdx.dll which
it didn’t need to intercept.

125

From http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

Stuxnet trojaned DLL

126

From http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

Function Redirection Tutorial

•  http://packetstormsecurity.org/papers/
win/intercept_apis_dll_redirection.pdf

•  Basically talks about making a trojan
DLL which hooks or reimplements some
functions for the intercepted DLL, and
then forwards the rest on to the original.
Basically exactly what Stuxnet did for
the trojan PLC accessing DLL.

127

Returning to Bound Imports
•  Just to fill this in, now that we know about forwarded functions, the point of

NumberOfModuleForwarderRefs and
IMAGE_BOUND_FORWARDER_REF is that when the linker is trying to
validate that none of the bound imports are changed, it needs to make sure
none of the versions (TimeDateStamps) of imported modules has changed.
Therefore if a module is bound to any modules which forward to other
modules, those forwarded-to modules must be checked as well

typedef struct _IMAGE_BOUND_IMPORT_DESCRIPTOR {
 DWORD TimeDateStamp;
 WORD OffsetModuleName;
 WORD NumberOfModuleForwarderRefs;
// Array of zero or more IMAGE_BOUND_FORWARDER_REF follows
} IMAGE_BOUND_IMPORT_DESCRIPTOR, *PIMAGE_BOUND_IMPORT_DESCRIPTOR;

typedef struct _IMAGE_BOUND_FORWARDER_REF {
 DWORD TimeDateStamp;
 WORD OffsetModuleName;
 WORD Reserved;
} IMAGE_BOUND_FORWARDER_REF, *PIMAGE_BOUND_FORWARDER_REF;

128

WHILE we’re thinking back…

•  What are the three types of imports?
•  What is the difference between

importing by name vs. ordinal?
•  Binding vs. ASLR: There can
be only one?
•  What did the life-size cut out of
Anakin Skywalker look like?

129

EAT Hooking

•  IAT hooking can modify all currently loaded
modules in a process’ address space. If
something new gets loaded (say, through
LoadLibrary()), the attacker would need to be
notified of this even to hook it’s IAT too.

•  Instead, if the attacker modifies the EAT in the
module which contains the the functions which
he is intercepting, when a new module is
loaded, he can just let the loaded do its thing,
and the new module will point at the attacker’s
code. Thus EAT hooking provides some
“forward compatibility” assurance to the
attacker that he will continue to hook the
functions for all subsequently loaded modules.

130

EAT Hooking Lab

•  beta: http://www.codeproject.com/KB/
system/api_spying_hack.aspx

131

132

X

X

X

X
X

Image by Ero Carrera

Debug Info
from winnt.h

typedef struct _IMAGE_DEBUG_DIRECTORY {!
 DWORD Characteristics;!
 DWORD TimeDateStamp;!
 WORD MajorVersion;!
 WORD MinorVersion;!
 DWORD Type;!
 DWORD SizeOfData;!
 DWORD AddressOfRawData;!
 DWORD PointerToRawData;!
} IMAGE_DEBUG_DIRECTORY, *PIMAGE_DEBUG_DIRECTORY;!
!
#define IMAGE_DEBUG_TYPE_UNKNOWN 0!
#define IMAGE_DEBUG_TYPE_COFF 1!
#define IMAGE_DEBUG_TYPE_CODEVIEW 2!
#define IMAGE_DEBUG_TYPE_FPO 3!
#define IMAGE_DEBUG_TYPE_MISC 4!
#define IMAGE_DEBUG_TYPE_EXCEPTION 5!
#define IMAGE_DEBUG_TYPE_FIXUP 6!
#define IMAGE_DEBUG_TYPE_OMAP_TO_SRC 7!
#define IMAGE_DEBUG_TYPE_OMAP_FROM_SRC 8!
#define IMAGE_DEBUG_TYPE_BORLAND 9!

#define IMAGE_DEBUG_TYPE_RESERVED10 10!
#define IMAGE_DEBUG_TYPE_CLSID 11!

133

Debug Info 2

•  TimeDateStamp, yet another to sanity check
against. Should be the same as the one in the
File Header I believe.

•  Type and SizeOfData are what you would
expect. The main Type we care about is
IMAGE_DEBUG_TYPE_CODEVIEW as this is
the common form now which points to a
structure which holds a path to the pdb file
which holds the debug symbols.

•  AddressOfRawData is an RVA to the debug
info.

•  PointerToRawData is a file offset to the debug
info.

134

Debug Info 3
From http://www.debuginfo.com/examples/src/DebugDir.cpp!
!
#define CV_SIGNATURE_NB10 '01BN’!
#define CV_SIGNATURE_RSDS 'SDSR’!
// CodeView header !
struct CV_HEADER {!
DWORD CvSignature; // NBxx!
LONG Offset; // Always 0 for NB10!
};!
// CodeView NB10 debug information !
// (used when debug information is stored in a PDB 2.00 file) !
struct CV_INFO_PDB20 {!
CV_HEADER Header; !
DWORD Signature; // seconds since 01.01.1970!
DWORD Age; // an always-incrementing value !
BYTE PdbFileName[1]; // zero terminated string with the name of the PDB file !
};!
!
// CodeView RSDS debug information !
// (used when debug information is stored in a PDB 7.00 file) !
struct CV_INFO_PDB70 {!
DWORD CvSignature; !
GUID Signature; // unique identifier !
DWORD Age; // an always-incrementing value !
BYTE PdbFileName[1]; // zero terminated string with the name of the PDB file !
};!

135

Oh yay!
Another TimeDateStamp!

Therefore, how shall we interpret this?

136

CV_HEADER Header

Header.
CvSignature Header.

Offset

Signature Age

PdbFileName
CV_INFO_PDB20

A thing of the past?

•  Between pulling a pdb path from high profile
malware like GhostNet, Aurora, and Stuxnet
malware, and Greg Hoglund starting to talk (at
BlackHat LV 2010) about using pdb paths and
TimeDateStamps to provide better attribution
for malware authors, are we going to see any
meaningful values here anymore? Time will tell.

•  e:\gh0st\server\sys\i386\RESSDT.pdb
•  \Aurora_Src\AuroraVNC\Avc\Release\AVC.pdb
•  b:\myrtus\src\objfre_w2k_x86\i386\guava.pdb

137

138

X

X

X

X

X
X

Image by Ero Carrera

Relocations
from winnt.h

•  Generally stored in the .reloc section
•  Not shown on the picture the

IMAGE_DIRECTORY_ENTRY_BASERELOC
points at an array of
IMAGE_BASE_RELOCATION structures.

typedef struct _IMAGE_BASE_RELOCATION {!
 DWORD VirtualAddress;!
 DWORD SizeOfBlock;!
// WORD TypeOffset[1];!
} IMAGE_BASE_RELOCATION;!

139

Relocations 2

•  VirtualAddress specifies the page-aligned
virtual address that the specified relocation
targets will be relative to.

•  SizeOfBlock is the size of the
IMAGE_BASE_RELOCATION itself + all
of the subsequent relocation targets.

•  Following SizeOfBlock are a variable
number of WORD-sized relocation targets.
The number of targets can be calculated
as (SizeOfBlock – sizeof(IMAGE_BASE_RELOCATION)) / sizeof(WORD).

140

Relocations example acledit.dll

141

Relocations 3

•  The upper 4 bits of the 16 bit relocation target
specifies the type. The lower 12 bits specifies
an offset, which will be used differently
depending on the type. Types are:

#define IMAGE_REL_BASED_ABSOLUTE 0!
#define IMAGE_REL_BASED_HIGH 1!
#define IMAGE_REL_BASED_LOW 2!
#define IMAGE_REL_BASED_HIGHLOW 3!
#define IMAGE_REL_BASED_HIGHADJ 4!
#define IMAGE_REL_BASED_MIPS_JMPADDR 5!
#define IMAGE_REL_BASED_MIPS_JMPADDR16 9!
#define IMAGE_REL_BASED_IA64_IMM64 9!
#define IMAGE_REL_BASED_DIR64 10!

•  We generally only care about
IMAGE_REL_BASED_HIGHLOW, which when
used says that the RVA for the data to be
relocated is specified by VirtualAddress + the
lower 12 bits.

142

Slice of life

•  So in the above if the file was being relocated,
the loader would take the relocation target
WORD 0x32FB, the upper 4 bits are 0x3 =
IMAGE_REL_BASED_HIGHLOW. The lower
12 bits are 0x2FB. Given the type, we do
(VirtualAddress (0x3000) + lower 12 bits
(0x2FB)) == 0x32FB is the RVA of the location
which needs to be fixed.

•  Then the loaded would just add whatever the
delta is between the file’s preferred load
address and actual load address, and just add
that delta to data at RVA 0x32FB.

•  (Show example in WinDBG of what target for
relocation can look like) 143

Memory Integrity Checking
•  Let’s say you want to make a memory integrity checker to look

for inline hooks in running code. You know at this point that
certain sections such as .text are marked as non-writable.
Therefore you would think what is on disk should be the same
as what’s in memory. So to check for changes in memory, you
should be able to hash the .text in memory, hash the .text read
in from disk, and compare the hashes, right?

•  Maybe. If the file isn’t relocated when it’s loaded into memory,
yes that would work*. If the file is relocated when loaded, the
application of the relocation fixups will change the bytes vs.
what is on disk, and therefore change the hash. You can still
compare hashes though if you now take the data read in from
disk and apply relocations to it in the same way the loaded
would have based on the delta between the preferred load
address and the actual load address.

•  *There are caveats such as the fact that things like the IAT can
exist in “non-writable” memory, but it still gets written at load
time, and thus differs from disk. That needs to be compensated
for too.

144

Threads
•  In modern OSes, processes generally have separate

address spaces (as we talked about in the IAT/EAT
hooking sections). Threads are distinct units of execution
flow & context which are usually managed by the kernel,
but which coexist within a single process address space.
Therefore each thread can see the same global variables
for instance, but care must be taken (mutual exclusion) to
ensure they don’t incur race conditions where two threads
access and modify some variable in a way which alters
the other’s execution by screwing up its expectations.

•  Therefore it is desirable sometimes to have variables
(besides local (stack) variables) which are accessible only
to a single thread. Thread Local Storage (TLS) is a
mechanism which MS has provided in the PE spec to
support this goal. They support both regular data as well
as callback functions, which can initialize/destroy data on
thread creation/destruction.

145

146

X

X

X

X
X

X

X

Image by Ero Carrera

Thread Local Storage
from winnt.h

typedef struct _IMAGE_TLS_DIRECTORY32 {!
 DWORD StartAddressOfRawData;!
 DWORD EndAddressOfRawData;!
 DWORD AddressOfIndex;!
 DWORD AddressOfCallBacks;!
 DWORD SizeOfZeroFill;!
 DWORD Characteristics;!
} IMAGE_TLS_DIRECTORY32;!

147

Thread Local Storage 2

•  StartAddressOfRawData is the absolute
virtual address (not RVA, and therefore subject
to relocations) where the data starts.

•  EndAddressOfRawData is the absolute virtual
address (not RVA, and therefore subject to
relocations) where the data ends.

•  AddressOfCallbacks absolute virtual address
points to an array of
PIMAGE_TLS_CALLBACK function pointers.

•  SizeOfZeroFill is interesting just because it’s
like a .bss zeroed blob tacked on after the TLS
data.

148

C:\WINDOWS\system32\bootcfg.exe
(the only executable I could find that uses tls, thanks to a presumed bug in my property finder)

149 Note that End Address – Start Address = 0x14. Go to .tls and look at the
likely file alignment padding resulting in a larger section.

How does one go about defining TLS?

•  http://msdn.microsoft.com/en-us/library/
6yh4a9k1(VS.80).aspx

•  __declspec(thread) int tls_i = 1;
•  More info http://msdn.microsoft.com/en-us/

library/ms686749(VS.85).aspx
•  Note: No way listed to create callbacks.

For that we have to consult with unofficial
sources:

•  http://www.nynaeve.net/?p=183
•  http://hype-free.blogspot.com/2008/10/

playing-tricks-with-windows-pe-loader.html
150

Lab: TSL Callbacks

•  Use Ilfak's example and Skywing's

151

More TLS Anti-Debug Tricks
/* TLS callback demonstration program.
 This program may be used to learn/illustrate the TLS callback concept.
 Copyright 2005 Ilfak Guilfanov <ig@hexblog.com>

 There is no standard way (from compiler vendors) of creating it.
 We use a special linker, UniLink, to create them.
 Please contact Yury Haron <yjh@styx.cabel.net> for more information
 about the linker.
*/

#include <windows.h>
#include <stdio.h>
#include "ulnfeat.h”
/* This is a TLS callback. It */
void __stdcall callback(void * /*instance*/,
 DWORD reason,
 void * /*reserved*/)
{
 if (reason == DLL_PROCESS_ATTACH)
 {
 MessageBox(NULL, "Hello, world!", "Hidden message", MB_OK);
 ExitProcess(0);
 }
}
TLS_CALLBACK(c1, callback); // Unilink trick to declare callbacks
/* This is the main function.
 It will never be executed since the callback will call ExitProcess().
*/
int main(void)
{
 return 0;
}

152

From http://www.hexblog.com/?p=9

TLS misc
•  TLS callbacks can be executed when a process or thread

is started or stopped. (DLL_PROCESS_ATTACH,
DLL_PROCESS_DETACH, DLL_THREAD_ATTACH,
DLL_THREAD_DETACH), the thing being that despite the
name, an exe is called with DLL_PROCESS_ATTACH.

•  TLS data generally stored in the .tls section
•  Self-modifying TLS callbacks: https://www.openrce.org/

blog/view/1114/Self-modifying_TLS_callbacks
•  Tls callbacks could also not just bypass a breakpoint, but

remove it too! :) More descriptions of possible actions
here: http://pferrie.tripod.com/papers/unpackers22.pdf

153

154

X

X

X

X

X

X

X
X

X

Image by Ero Carrera

Resources
from winnt.h

•  Generally stored in the .rsrc section
typedef struct _IMAGE_RESOURCE_DIRECTORY
{!

 DWORD Characteristics;!
 DWORD TimeDateStamp;!
 WORD MajorVersion;!
 WORD MinorVersion;!
 WORD NumberOfNamedEntries;!
 WORD NumberOfIdEntries;!
} IMAGE_RESOURCE_DIRECTORY,!

155

Resources 2

•  Immediately following
IMAGE_RESOURCE_DIRECTORY is an
array of NumberOfNamedEntries +
NumberOfIdEntries
IMAGE_RESOURCE_DIRECTORY_ENTRY
structs (with the Named entries first, followed
by the ID entries.)

•  A resource can be identified by a name
or an ID, but not both.

156

Resources 3: What the…
typedef struct _IMAGE_RESOURCE_DIRECTORY_ENTRY {
 union {
 struct {
 DWORD NameOffset:31;
 DWORD NameIsString:1;
 };
 DWORD Name;
 WORD Id;
 };
 union {
 DWORD OffsetToData;
 struct {
 DWORD OffsetToDirectory:31;
 DWORD DataIsDirectory:1;
 };
 };
} IMAGE_RESOURCE_DIRECTORY_ENTRY;

157

Resources 4
•  It’s actually simpler than it looks. If the first DWORD’s

MSB is set (and therefore it starts with 8), that means the
lower 31 bits are an offset to a string which is the name of
the resource (and is specified like a wide character pascal
string…that is, instead of being null terminated, it starts
with a length which specifies the number of characters
which follow…haven’t been able to find what the actual
type is).

•  If the MSB is not set, it’s treated as a WORD sized ID.
•  If the MSB of the second DWORD is set, that means the

lower 31 bits are an offset to another
IMAGE_RESOURCE_DIRECTORY.

•  If the MSB is not set, that means it’s an offset to the
actual data.

•  All offsets are relative to the start of resource section.
•  Let’s walk an example

158

Resources 5

•  Using resources in Visual Studio:
http://msdn.microsoft.com/en-us/library/
7zxb70x7.aspx since I don’t want to get into it.

•  Both legitimate software and malware can
embed additional binaries in the resources and
then pull them out and execute them at
runtime. E.g. ProcessExplorer and
GMER .exes have kernel drivers embedded
which they load on demand. Stuxnet also had
numerous difference components such as
kernel drivers, exploit code, dll injection
templates, and config data embedded in
resources.

159

ProcessExplorer.exe's resources

•  Has embedded kernel drivers which it
extracts and loads into memory on the
fly. Different versions for x86 vs x86-64

•  Look at the overloaded structs in
PEView.

160

161

X

X

X

X

X

X

X
X

X

X

Image by Ero Carrera

Load Configuration from winnt.h

•  Another struct which doesn’t rate inclusion in the picture
typedef struct {!
 DWORD Size;!
 DWORD TimeDateStamp;!
 WORD MajorVersion;!
 WORD MinorVersion;!
 DWORD GlobalFlagsClear;!
 DWORD GlobalFlagsSet;!

 DWORD CriticalSectionDefaultTimeout;!
 DWORD DeCommitFreeBlockThreshold;!
 DWORD DeCommitTotalFreeThreshold;!
 DWORD LockPrefixTable; // VA!
 DWORD MaximumAllocationSize;!
 DWORD VirtualMemoryThreshold;!

 DWORD ProcessHeapFlags;!
 DWORD ProcessAffinityMask;!
 WORD CSDVersion;!
 WORD Reserved1;!
 DWORD EditList; // VA!
 DWORD SecurityCookie; // VA!

 DWORD SEHandlerTable; // VA!
 DWORD SEHandlerCount;!
} IMAGE_LOAD_CONFIG_DIRECTORY32! 162

Load Config
•  SecurityCookie is a VA (not RVA, therefore subject to

fixups) which points at the location where the stack cookie
used with the /GS flag will be.

•  SEHandlerTable is a VA (not RVA) which points to a
table of RVAs which specify the only exception handlers
which are valid for use with Structured Exception Handler
(SEH). The placement of the pointers to these handlers is
caused by the /SAFESEH linker options.

•  Take Corey Kallenberg’s exploits class to see how
SafeSEH mitigates exploits.

•  SEHandlerCount is then just the number of entries in the
array pointed to by SEHandlerTable.

•  See http://msdn.microsoft.com/en-us/library/ms680328
(VS.85).aspx for a description of the rest of the fields

163

/SAFESEH
(There's no GUI option for this, and MS says to just set it manually)
http://msdn.microsoft.com/en-us/library/9a89h429(v=VS.100).aspx

164

/GS "stack cookie/canary" option
Helps detect stack buffer overflows

165

166

X

X

X

X

X

X
X

X

X
X

X

Image by Ero Carrera

Digitally Signed Files
(“Authenticode”)

•  Where certificates are stored
•  http://msdn.microsoft.com/en-us/library/

ms537361(VS.85).aspx
•  “The utility programs use the private key

to generate a digital signature on a
digest of the binary file and create a
signature file containing the signed
content of a public key certificate
standard (PKCS) #7 signed-data object”

•  ProcessExplorer as an example
167

And the rest

•  Most of the rest of the DataDirectory[]
entries don't even apply to x86,
therefore they have been moved to the
backup slides

168

OS Loader: Load Time
(roughly based on the description of the Win2k loader here:
http://msdn.microsoft.com/en-us/magazine/cc301727.aspx)

1.  Copy file from disk to memory per the section headers'
specification of file offsets being mapped to virtual addresses.
Select randomized base virtual address if ASLR compatible.
Set the backend RWX permissions on the virtual memory
pages (with NX if asked for.)

2.  Fix relocations (if any)
3.  Recursively check whether a DLL is already loaded, and if not,

load imported DLLs (and any forwarded-to DLLs) and resolve
imported function addresses placing them into the IAT. After
every DLL is imported, call each DLL's entry point.

4.  Resolve any bound imports in the main executable which are
out of date.

5.  Transfer execution to any TLS callbacks
6.  Transfer execution to the executable's entry point specified in

the OptionalHeader

169

PE Format (From OpenRCE.org)
Review

170

Image by Ero Carrera www.openrce.org/reference_library/files/reference/PE%20Format.pdf

