N T

SECRET LIFE
o/ BINARIES!

Xeno Kovah - 2010
xkovah at gmail

Approved for Public Release: 10-4654. Distribution Unlimited

All materials are licensed under a Creative
Commons “Share Alike” license.

 http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®E

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible 2
license.

© ®

Executable Formats

Common Object File Format (COFF)
was introduced with UNIX System V.

Windows has Portable Executable (PE)
format. Derived from COFF.

Modern unix derivatives tend to use the
Executable and Linkable Format (ELF).

Mac OS X uses the Mach Object
(Mach-o) format.

Different target binary formats

« Executable (.exe on Windows, no suffix on Linux)

— A program which will either stand completely on its own,
containing all code necessary for its execution, or which will
request external libraries that it will depend on (and which
the loader must provide for the executable to run correctly)

* Dynamic Linked Library (.dll) on Windows == Shared
Library aka Shared Obiject (.so) on Linux

— Needs to be loaded by some other program in order for any
of the code to be executed. The library *may* have some
code which is automatically executed at load time (the
DlIMain() on windows or init() on Linux). This is as opposed
to a library which executes none of its own code and only
provides code to other programs.

« Static Library (.lib on Windows, .a on Linux)

— Static libraries are just basically a collection of object files,
wfith scl)cme specific header info to describe the organization
of the files.

Fileson Disk Loader Overview Virtual Memory
Address Space

/ Kernel \

WickedSweetApp.exe
/Code N

Data
Import MyLibT | * = =« ., |
Import MyLib2 | Tt
ImportLibCc | Tt
P Y ...

: " - Executable Loader
MyLib1.dll = P

&

(Code) L= 7 ol «
Data - - e L * b
e o Userspace

Import MyLib2 7 ' }
- P / g / i Stack
7 e Hea
/ | g
MyLib2.dl s VAN ‘
y -) / WickedSweetApp.exe
/Code N / . 2 y
Data yd \ / =12
) I - MyLib1.dll
- p _ [MyLib2.dll

o _/

Common Windows PE File
Extensions

.exe - Executable file

.dIl - Dynamic Link Library

.sys/.drv - System file (Kernel Driver)
.ocx - ActiveX control

.cpl - Control panel

.SCr - Screensaver

Note: .lib files (Static Libraries) don't have
the same "DOS Header then PE Header"
format that the rest of these do.

Building Windows Executable, Dynamic
Linked Library, Static Library

[+ Common Properties
=) Configuration Properties
General
Debugaging
4 CJC++
[+ Linker
+- Manifest Tool
[+ ¥ML Document Generator
- Browse Information
) Build Events
- Custom Build Step

=
Output Directory
Intermediate Directory
Extensions to Delete on Clean
Build Log File
Inherited Project Property Sheets
Enable Managed Incremental Build

$(SolutionDir)$(ConfigurationName)
$(ConfigurationName)

* obj;*.ilk; ™ tb;* Eli;* tlhy ¥ trp;*.rsp;*. pac; *. pad; * . meta; $1
$(IntDir)\BuildLog.htm

Yes

=
Configuration Type Application (.exe) v

Use of MFC
Use of ATL
Character Set

Common Language Runtime support

Whole Program Optimization

Configuration Type

Makefile

Application (.exe)
Dynamic Library (.dll})
Static Library (.lib)
Ltility

Specifies the type of output this configuration generates.

i

You are here :D

-

W WATE SSONT CARTNSTO
o

e bl

T

.- e INHE o
oy ~wan e &) -
e ~ tose PSCE e A8 D O e se
o - -
inte P D L o SR T
e - B e Lt
e o #ARASE_SRECTONY BN BOUND NI
- 3 Py
) 5 M . ¥ L
b : " X4 WNCH

LT —
I —

(e

DD DR b
. DO G

P T . MADE ORISR DN ERTPTEN
T Vend VA BRT00F JORT AN

flom
-

et
T S At
DWCAT ik g
. g 0w N B

CREREETUITECETERRRREEIIISNUNIER]

T

. WALE TATA SNCTONY
- ————

—) S Cse el v @A St
— SraCe Pl Sy T e

www.openrce.org/reference_library/files/reference/PE%20Format.pdf Image by Ero Carrera

Further Reading

The definitions of all of the structures for a PE file are
in WINNT .h

An In-Depth Look into the Win32 Portable Executable
File Format Part 1 & 2 — An excellent set of reference
articles by Matt Pietrek (this is how | first learned)

http://msdn.microsoft.com/en-us/magazine/cc301805.aspx,
http://msdn.microsoft.com/en-us/magazine/cc301808.aspx

The official spec:

http://www.microsoft.com/whdc/system/platform/firmware/pecoff.mspx
All the VisualStudio compiler options (note, some aren't in the GUI, you
have to add them manually): http://msdn.microsoft.com/en-us/
library/fwkeyyhe(v=VS.90).aspx

All the VS linker options: http://msdn.microsoft.com/en-us/
library/y0zzbyt4(v=VS.90).aspx 9

Your new best friends:
PEView and CFF Explorer

| like PEView (http://www.magma.ca/~wjr/PEview.zip) by
Wayne Radburn for looking at PE files. It s
no frills and gives you a view very close to
what you would see if you were looking at

the structs in a program which was parsing
the file.

* Once you've seen and understood stuff in
PEView, you can graduate to the much
more feature-full CFF Explorer by Daniel
Pistelli (it lets you hex edit the file or
disassemble code! :D)
(http://www.ntcore.com/exsuite.php)

10

Tools: WinDbg

« We’ re going to be using WinDbg for
basic userspace debugging (as

opposed to kernel debugging like in the
Intermediate x86 class)

11

RVA -

some

Terminology

Relative Virtual Address. This indicates
displacement relative to the start (base)

of a binary in memory.

Soif t
(abso
then t

ne base is 0x80000000, and the
ute) Virtual Address was 0x80001000,

ne RVA would be 0x1000.

If the base is 0x80000000, and the VA was
0xC123000f, then the RVA would be
0x4123000f.

RVA = VA — Base

Windows uses RVAs extensively in the PE
format, unlike ELF which uses just absolute

VAs

12

struct _IMAGE_DOS_HEADER {
0x00 WORD e_magic;
0x02 WORD e_cblp;
0x04 WORD e_cp;

0x06 WORD e_crlc;
0x08 WORD e_cparhdr;
O0x0a WORD e_minalloc;
0x0c WORD e_maxalloc;
O0x0e WORD e_ss;

0x10 WORD e_sp;

0x12 WORD e_csum;
0x14 WORD e_ip;

0x16 WORD e_cs;

0x18 WORD e_lfarlc;
Ox1a WORD e_ovno;
Ox1c WORD e_res[4];
0x24 WORD e_oemid;
0x26 WORD e_oeminfo;
0x28 WORD e_res2[10];
0x3c DWORD e_lfanew;

%

HT I R 14T

Image by Ero Carrera

The MS-DOS File Header

(from winnt.h)
BLUE means the stuff we actually care about

typedef struct IMAGE DOS_ HEADER {

WORD e_magic;
WORD e cblp;
WORD e _cp;

WORD e crlc;
WORD e_cparhdr;
WORD e minalloc;
WORD e maxalloc;
WORD e _ss;

WORD e _sp;

WORD e_cCsum;
WORD e ip;

WORD e _cs;

WORD e lfarlc;
WORD € ovno;
WORD e res[4];
WORD e oemid;
WORD e oeminfo;
WORD e res2[10];
LONG e_lfanew;

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

} IMAGE DOS HEADER, *PIMAGE DOS HEADER;

DOS .EXE header

Magic number

Bytes on last page of file

Pages in file

Relocations

Size of header in paragraphs
Minimum extra paragraphs needed
Maximum extra paragraphs needed
Initial (relative) SS value
Initial SP value

Checksum

Initial IP value

Initial (relative) CS value

File address of relocation table
Overlay number

Reserved words

OEM identifier (for e oeminfo)
OEM information; e oemid specific
Reserved words

File address of new exe header

14

The DOS Header

- e _magic is set to ASCIl ‘MZ" which is from

Mark Zbikowski who developed MS-DOS

For most Windows programs the DOS header
contains a stub DOS program which does
nothing but print out “This program cannot be
run in DOS mode”

The main thing we care about is the e_Ifanew
field, which specifies a file offset where the
PE header can be found (a file pointer if you
will)

15

¥
a4

11111

grILIILL
HIT

4

ik

struct _IMAGE_NT_HEADERS {
0x00 DWORD Signature;
_IMAGE_FILE_HEADER FileHeader;
0x18 _IMAGE_OPTIONAL_HEADER OptionalHeader;
i

WSS W A .
0 VUL NaadWAZE 3 - -~

struct _IMAGE_NT_HEADERS {

0x00 DWORD Signature;
0x04 _IMAGE_FILE_HEADER FileHeader;

0x18 _IMAGE_OPTIONAL_HEADER OptionalHeader;

(Portable Executable Format |

wain o T

e —— o~ = ~

D WO e 0 [EER

- — SO PNl T Ty Te Jwe
Lot wochemed o Mon Cec 25 X004

Image by Ero Carrera

NT Header or “PE Header”

(from winnt.h)

typedef struct IMAGE_NT HEADERS {
DWORD Signature;

IMAGE_FILE_HEADER FileHeader,
IMAGE_OPTIONAL_HEADER32 OptionalHeader;

} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

» Signature == 0x00004550 aka ASCII
string “PE” in little endian order in a
DWORD

» Otherwise, just a holder for two other
*embedded” (not pointed to) structs

17

y
struct _IMAGE_FILE_HEADER {

0x00 WORD Machine;

0x02 WORD NumberOfSections;
0x04 DWORD TimeDateStamp;
0x08 DWORD PointerToSymbolTable;
0x0c DWORD NumberOfSymbols;
0x10 WORD SizeOfOptionalHeader;
0x12 WORD Characteristics;

Image by Ero Carrera

File Header

(from winnt.h)

typedef struct IMAGE FILE HEADER {

WORD
WORD
DWORD
DWORD
DWORD
WORD
WORD

Machine;
NumberOfSections;
TimeDateStamp;
PointerToSymbolTable;
NumberOfSymbols;
SizeOfOptionalHeader;
Characteristics;

} IMAGE FILE HEADER, *PIMAGE FILE HEADER;

19

File Header 2

 The TimeDateStamp field is pretty
interesting. It’ s a Unix timestamp (seconds
since epoc, where epoc is 00:00:00 UTC on
January 1st 1970) and is set at link time.

— Can be used as a “unique version” for the given
file (the version compiled on Jan 1 2010 may or
may not be meaningfully different than that
compiled on Jan 2 2010)

— Can be used to know when a file was linked
(useful for determining whether an attacker tool is
“fresh”, or correlating with other forensic
evidence, keeping in mind that attackers can
manipulate it)

20

File Header 3

* Oh hay, Hoglund started using the
TimeDateStamp as a characteristic for
malware attribution (BlackHat Las
Vegas 2010, slides not posted yet)

* NumberOfSections tells you how many
section headers there will be later

21

BEHEHH T

SIFETERE

—
WGE BEC 0N SEADE <
o VAT D RO

- A
Ve

s
FVTE Vg e Ve

var EERERREEIINSNENIERT

MRS CHNCI DN I ERONT

WA CRRECTORE DN O

e R T
el ot —
. DO G

WA DRI DN ERSPTEN
AR S
el e —

. DO G

WA DRI I STRTY

. WASE TATA SNCTONY
v —arr

VA TS e
AT e
DD DR b
B DOAO S

WO RO DN
AT e
DD DR b
i DO G

WA CRRICTIRE DN BOUNT e

WAL A A

. WALE TATA SNCTONY
- ————
B DO S

-

s
FIVCR T DR D .
Pty -
R ettt
P ARADE_SRECTONY BN BOUND INRORT

-
B b LTS
* 10N BCY

P et e # ¢ -

-
W s o
e

v
” A

CRESIEERTEENY

- i
e s g me S ——

— e ver - e

R i et
-

-
Bell BN Mt
RAADE WPCNT e WANE PRMCE AT W

Image by Ero Carrera

File Header 4

(from winnt.h)

 The Characteristics field is used to specity
things like:

(teeheehee)

#define IMAGE FILE EXECUTABLE IMAGE 0x0002

// File is executable (i.e. no unresolved externel&kreferences).
#define IMAGE FILE LINE NUMS STRIPPED 0x0004

// Line nunbers_stripped from file. teeheshe)
#define IMAGE FILE LARGE ADDRESS AWARE 0x0020

// App can handle >2gb addresses

#define IMAGE FILE 32BIT MACHINE 0x0100

// 32 bit word machine.

#define IMAGE FILE SYSTEM 0x1000

// System File. (Xeno:|don’tsee that set on .sys files)

#define IMAGE FILE DLL 0x2000

// File is a DLL.

23

File Header 4

« SizeOfOptionalHeader can theoretically
be shrunk to exclude “data directory”
fields (talked about later) which the
linker doesn’ t need to include. But |
don’ t think it ever is in practice.

* PointerToSymbolTable,
NumberOfSymbols not used anymore
now that debug info is stored in
separate file

24

HE I

PR
EE PR

struct _IMAGE_OPTIONAL_HEADER {

0x00
0x02
0x03
0x04
0x08
0x0c
0x10
0x14
0x18
Oxic
0x20
0x24
0x28
0Ox2a
0Ox2c
0x2e
0x30
0x32
0x34
0x38
0x3c
0x40
0x44
0x46
0x48
Ox4c
0x50
0x54
0x58
0x5¢
0x60

-

WORD Magic;

BYTE MajorLinkerVersion;

BYTE MinorLinkerVersion;
DWORD SizeOfCode,;

DWORD SizeOflnitializedData;
DWORD SizeOfUninitializedData;
DWORD AddressOfEntryPoint;
DWORD BaseOfCode;

DWORD BaseOfData;

DWORD ImageBase;

DWORD SectionAlignment;
DWORD FileAlignment;

WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorlmageVersion;
WORD MinorlmageVersion;
WORD MajorSubsystemVersion;
WORD MinorSubsystemVersion;
DWORD Win32VersionValue;
DWORD SizeOflmage;

DWORD SizeOfHeaders;
DWORD CheckSum;

WORD Subsystem;

WORD DIICharacteristics;
DWORD SizeOfStackReserve;
DWORD SizeOfStackCommit;
DWORD SizeOfHeapReserve;
DWORD SizeOfHeapCommit;
DWORD LoaderFlags;

DWORD NumberOfRvaAndSizes;
_IMAGE_DATA_DIRECTORY DataDirectory[16];

Portable Executable Format |

q SOue SomEred w@a Jawe
—— S Cure pONeI B By Te St

|woxheted o Mon Cec 38 2000

nage by Ero Carrera

typedef struct IMAGE OPTIONAL HEADER { From winnt.h

WORD Magic;
BYTE MajorLinkerVersion;
BYTE MinorLinkerVersion;

DWORD SizeOfCode;

DWORD SizeOfInitializedData;
DWORD SizeOfUninitializedData;
DWORD AddressOfEntryPoint;
DWORD BaseOfCode;

DWORD BaseOfData;

DWORD ImageBase;

DWORD SectionAlignment;

DWORD FileAlignment;

WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorImageVersion;

WORD MinorImageVersion;

WORD MajorSubsystemvVersion;

WORD MinorSubsystemVersion;

DWORD Win32VersionValue;

DWORD SizeOfImage;

DWORD SizeOfHeaders;

DWORD ChecksSum;

WORD Subsystem;

WORD DllCharacteristics;

DWORD SizeOfStackReserve;

DWORD SizeOfStackCommit;

DWORD SizeOfHeapReserve;

DWORD SizeOfHeapCommit;

DWORD LoaderFlags;

DWORD NumberOfRvaAndSizes;

IMAGE_DATA DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ ENTRIES]; 26
} IMAGE OPTIONAL HEADER32, *PIMAGE OPTIONAL HEADER32Z;

Optional Header

* [t's not at all optional ;)

* AddressOfEntryPoint specifies the
RVA of where the loader starts
executing code once it's completed
loading the binary. Don’'t assume it just
points to the beginning of the .text
section, or even the start of main().

» SizeOflmage is the amount of
contiguous memory that must be
reserved to load the binary into memory

27

Optional Header 2

« SectionAlignment specifies that sections
(talked about later) must be aligned on
boundaries which are multiples of this
value. E.g. if it was 0x1000, then you might
expect to see sections starting at 0x1000,
0x2000, 0x5000, etc.

» FileAlignment says that data was written
to the binary in chunks no smaller than this
value. Some common values are 0x200
(512, the size of a HD sector), and 0x80
(not sure what the significance is)

28

Optional Header 3

ImageBase specifies the preferred virtual memory location
where the beginning of the binary should be placed.

Microsoft recommends developers “rebase” DLL files. That is,
picking a non-default memory address which will not conflict
with any of the other libraries which will be loaded into the same
memory space.

If the binary cannot be loaded at ImageBase (e.g. because
something else is already using that memory), then the loader
picks an unused memory range. Then, every location in the
binary which was compiled assuming that the binary was loaded
at ImageBase must be fixed by adding the difference between
the actual ImageBase minus desired ImageBase.

The list of places which must be fixed is kept in a special
“relocations” (.reloc) section.

This is because MS doesn’ t support position-independent code

29

Optional Header 4

DLLCharacteristics specifies some important security options like
ASLR and non-executable memory regions for the loader, and the
effects are not limited to DLLs

#define IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE 0x0040 // DLL can move

#define IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY 0x0080 // Code Integrlty Image

#define MAG _DLLCHARACTERISTICS_ NX_COMPAT 0x0100 // Image is NX co mp ati bl

#define _ DLLCHARACTERISTICS_NO_SE 0x0400 // Image do no No SE handler may reside in this image

IMAGE DLLCHARACTERISTICS DYNAMIC BASE is set When linked
with the /DYNAMICBASE option. This is the flag which tells the OS

loader that this binary supports ASLR. Must be used with the /FIXED:NO
option for .exe files otherwise they won't get relocation information.

IMAGE_DLLCHARACTERISTICS FORCE_INTEGRITY says to
check at load time whether the digitally signed hash of the binary
matches.

IMAGE_DLLCHARACTERISTICS NX COMPAT is set with the /
NXCOMPAT linker option, and tells the loader that this image is
compatible with Data Execution Prevention (DEP) and that non-
executable sections should have the NX flag set in memory (we learn
about NX in the Intermediate x86 class)

IMAGE_DLLCHARACTERISTICS NO_SEH says that this binary
never uses structured exception handllng and therefore no default
handler should be created (because in the absence of other opiions
that SEH handler is potentially vulnerable to attack.)

Security-Relevant Linker Options

« /DYNAMICBASE — Mark the properties to indicate that this
executable will work fine with Address Space Layout
Randomization (ASLR)

« /FIXED:NO - This will force the linker to generate relocations
information for an executable, so that it is capable of having its
base address modified by ASLR (otherwise usually .exe files
don't have relocations information, and therefore can't be moved
around in memory)

« /NXCOMPAT — Mark the properties to indicate that this
executable will work fine with Data Execution Protection (which
marks data memory regions such as the stack and heap as non-
executable). DEP is just MS's name for utilizing the NX/XD bit to
mark memory pages as non-executable (Which we'll talk about
more in the Intermediate x86 class)

« /SAFESEH — Safe Structured Exception Handling. Enforces that
the only SEH things you can use are ones which are specified in
the binary (it will automatically add any ones defined in your
code to a list that will be talked about later)

31

ASLR & DEP/NX

[+ Common Propetties Entry Point
= Configuration Properties No Entry Point No A S L R
General Set Checksum No
Debugaing Base Address AN &
CICH+ Randomized Base Address Enable Image Randomization {/DYNAMICBASE)
=) Linker Generate a relocation section {/FIXED:NO)
General Data Execution Prevention (DEP) Image is compatible with DEP {{NXCOMPAT)
G ene rate Turn Off Assembly Generation Mo

Delay Loaded DLL Don't Support Unload

Re I OCatIO n S Import Library D E P/NX

Merge Sections

Optimization

Embedded 10L Target Machine MachineX86 (/MACHINE:X86)
Advanced Profile Mo
Command Line CLR Thread Attribute Mo threading attribute set
#- Manifest Tool CLR Image Type Default image type
XML Document Generator Key File
+ Browse Information Key Container
) Build Events Delay Sign Mo
) Custom Build Step Error Reporting Prompt Immediately {fERRORREPORT:PROMPT)

CLR Unmanaged Code Check Mo

Fixed Base Address
Specifies if image must be loaded at a fixed address. {JFIXED:[Mo])

32

ASLR & DEP/NX in the Binary

ASLR

= scratch.exe Data Description
IMAGE_DOS_HEADER 0000013E DLL Characteristics
MS-DOS Stub Program 0040 IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE
=- IMAGE_NT_HEADERS 0100 IMAGE_DLLCHARACTERISTICS_NX_COMPAT

Signature 8000 IMAGE_DLLCHARACTERISTICS_TERMINAL_SNAWARE
IMAGE_FILE_HEADER 00000140 00100000 Size of Stack Reserve
IMAGE_OPTIONAL_HEADER 00000144 00001000 Size of Stack Commit D E P/N |

IMAGE_SECTION_HEADER .text 00000148 00100000 Size of Heap Reserve |

IMAGE_SECTION_HEADER .rdata || 0000014C 00001000 Size of Heap Commit

IMAGE_SECTION_HEADER .data 0oooo150 00000000 Loader Flags
IMAGE_SECTION_HEADER .rsrc 00000154 00000010 Number of Data Directories

IMAGE_SECTION_HEADER .reloc 00000158 00000000 RWA EXPORT Table
SECTION .text 000on15Cc 00000000 Size
+- SECTION .rdata 00000160 00002304 RWVA IMPORT Table
SECTION .data 00000164 00000N3C Size
+- SECTION .rsrc 00000168 00004000 RWA RESOURCE Table
- SECTION .reloc 0000D16C 000002B4 Size
Relocations

33

BHHEHH LT

R R R EREL T

DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ ENTRIES]

EEERETENTRRERERIERER s snantEst

EEEEEEERSREE

#define IMAGE NUMBEROF DIRECTORY ENTRIES 16
(from winnt.h)

Therefore, while FileHeader.SizeOfOptionalHeader
could technically change, in practice it’s fixed

Optional Header 3

* The type of DataDirectory[16] is
IMAGE_DATA DIRECTORY

typedef struct IMAGE DATA DIRECTORY {
DWORD VirtualAddress;
DWORD Size;
} IMAGE DATA DIRECTORY, *PIMAGE DATA DIRECTORY;

* VirtualAddress is a RVA pointer to some
other structure of the given Size

35

#define
#define
#define
#define
#define
#define
#define
//

#define
#define
#define
#define
#define
#define
#define
#define

Optional Header 4

(from winnt.h)

 There is a predefined possible structure for each index in DataDirectoryf]

IMAGE_DIRECTORY ENTRY EXPORT
IMAGE_DIRECTORY ENTRY IMPORT
IMAGE_DIRECTORY ENTRY RESOURCE
IMAGE_DIRECTORY ENTRY EXCEPTION
IMAGE _DIRECTORY ENTRY SECURITY
IMAGE_DIRECTORY ENTRY BASERELOC
IMAGE_DIRECTORY ENTRY DEBUG
IMAGE_DIRECTORY ENTRY COPYRIGHT
IMAGE_DIRECTORY ENTRY ARCHITECTURE
IMAGE_DIRECTORY ENTRY GLOBALPTR
IMAGE_DIRECTORY ENTRY TLS
IMAGE_DIRECTORY ENTRY LOAD CONFIG
IMAGE_DIRECTORY ENTRY BOUND IMPORT
IMAGE_DIRECTORY ENTRY IAT
IMAGE_DIRECTORY ENTRY DELAY IMPORT

00 N o0 U b W N P O

_ o= e
N R O WO

13

IMAGE DIRECTORY_ ENTRY COM DESCRIPTOR 14

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Export Directory

Import Directory

Resource Directory

Exception Directory

Security Directory

Base Relocation Table

Debug Directory

(X86 usage)

Architecture Specific Data
RVA of GP

TLS Directory

Load Configuration Directory
Bound Import Directory in headers
Import Address Table

Delay Load Import Descriptors
COM Runtime descriptor

 We will return to each entry in the DataDirectory][] later.
* Note that while the array is 16 elements, only 15 (0-14) are defined.

36

Pop quiz, hot shot. Which fields
do we even care about, and why?

typedef struct IMAGE DOS HEADER ({ // DOS .EXE header
WORD e magic; // Magic number
WORD e cblp; // Bytes on last page of file
WORD e cp; // Pages in file
WORD e crlc; // Relocations
WORD e cparhdr; // Size of header in paragraphs
WORD e minalloc; // Minimum extra paragraphs needed
WORD e maxalloc; // Maximum extra paragraphs needed
WORD e ss; // Initial (relative) SS value
WORD e sp; // Initial SP value
WORD e csum; // Checksum
WORD e ip; // Initial IP value
WORD e Ccs; // Initial (relative) CS value
WORD e lfarlc; // File address of relocation table
WORD e ovno; // Overlay number
WORD e res[4]; // Reserved words
WORD e oemid; // OEM identifier (for e oeminfo)
WORD e oeminfo; // OEM information; e oemid specific
WORD e res2[10]; // Reserved words
LONG e lfanew; // File address of new exe header

} IMAGE DOS HEADER, *PIMAGE DOS HEADER; 37 Q
v

Sections

» Sections group portions of code or data
(Von Neumann sez: “What’ s the
difference?! :P”) which have similar
purpose, or should have similar memory
permissions (remember the linking
merge option? That would be for
merging sections with "similar memory
permissions")

38

Sections 2

Common section names:

.te>d<t =kCode which should never be paged out of memory
to dis

.data = read/write data (globals)

.rdata = read-only data (strings)

bss = (Block Started by Symbol or Block Storage
Segment or Block Storage Start depending on who you
ask (the CMU architecture book says the last one))

MS spec says of .bss “Uninitialized data (free format)”
which is the same as for ELF.

In practice, the .bss seems to be merged into the .data
section by the linker for the binaries I’ ve looked at

Idata = import address table (talked about later). In
practice, seems to get merged with .text or .rdata

39

Sections 3

« PAGE™ = Code/data which it's fine to page
out to disk if you're running low on memory
(not in the spec, seems to be used
primarily for kernel drivers)

 .reloc = Relocation information for where
to modify hardcoded addresses which
assume that the code was loaded at its
preferred base address in memory

 .rsrc = Resources. Lots of possible stuff
from icons to other embedded binaries.
The section has structures organizing it
sort of like a filesystem.

40

pabes
P
peg
~—3~1 b |
Inde NORO 8 men s ban g et WADE RONT BN -
——— towe
ihd WORG & saem pramg—— pry— iot WHE | e
e . T [
TR WO . e D AOAG Moo Ol o - A
8 WO » - | ~ - ~ -
PR — DD DWORD Patvn Ny eite s - N . tors w e [pp——— p——
i - DWCAT A bt - S 0 r2d dwree dovy
RIN WORO @ s - o~ - Nt - r AL TONY BN ROND O
IS AORO & s (S - —nm
. - e .y ¥ A
B WO e ™ e
' / ’ e PTeea—

— typedef struct _IMAGE_SECTION HEADER{

—| 0x00 BYTE Name[IMAGE_SIZEOF_SHORT_NAME];
union {

0x08 DWORD PhysicalAddress;

0x08 DWORD VirtualSize;

: fox } MiSC;

-] 0Ox0c DWORD VirtualAddress;

—| 0x10 DWORD SizeOfRawData;

' | | 0x14 DWORD PointerToRawData:

=~1 0x18 DWORD PointerToRelocations;

:-| Ox1c DWORD PointerToLinenumbers;

-1 0x20 WORD NumberOfRelocations;

0x22 WORD NumberOfLinenumbers;

0x24 DWORD Characteristics;

3

p— J
@O ENRG E

- 2RRRY
HEEER -
25522288

Image by Ero Carrera

Section Header

(from winnt.h)

#define IMAGE_SIZEOF_SHORT_NAME 8

typedef struct IMAGE SECTION HEADER {
BYTE Name [IMAGE SIZEOF_SHORT NAME];
union {
DWORD PhysicalAddress;
DWORD VirtualSize;
} Misc;
DWORD VirtualAddress;
DWORD SizeOfRawData;
DWORD PointerToRawData;
DWORD PointerToRelocations;
DWORD PointerToLinenumbers;
WORD NumberOfRelocations;
WORD NumberOfLinenumbers;
DWORD Characteristics;
} IMAGE SECTION HEADER, *PIMAGE SECTION HEADER;

Refresher: C Unions

union {
DWORD PhysicalAddress;
DWORD VirtualSize;
} Misc;

« Used to store multiple different interpretations
of the same data in the same location.

« Accessed as if the union were a struct. So if
you have

IMAGE SECTION HEADER sectHdr;

You don’ t access sectHdr.VirtualSize,
you access sectHdr.Misc.VirtualSize

« We will only ever consider it as the VirtualSize
field.

43

Section Header 2

- Name[8] is a byte array of ASCII
characters. It is NOT guaranteed to be
null-terminated. So if you' re trying to
parse a PE file yourself you need to be
aware of that.

» VirtualAddress is the RVA of the section
relative to OptionalHeader.ImageBase

 PointerToRawData is a relative offset
from the beginning of the file which says
where the actual section data is stored.

44

Section Header 3

* There is an interesting interplay between

Misc.VirtualSize and SizeOfRawData. Sometimes
one is larger, and other times the opposite.

Why would VirtualSize be greater than
SizeOfRawData? This indicates that the section is
allocating more memory space than it has data
written to disk.

Think about the .bss portion of the .rdata section. It
just needs a bunch of space for variables. The
variables are uninitialized, which is why they don’ t
have to be in the file. Therefore the loader can just
give a chunk of memory to store variables in, by
just allocating VirtualSize worth of data. Thus you
get a smaller binary.

45

0x500

VirtualSize > SizeOfRawData

(on your own slide, draw the correspondence between the 0x200 in the first picture and the 0x300 in the second)

Section On Disk

SectionHeader
Misc.VirtualSize = 0x300
SizeOfRawData = 0x200
PointerToRawData = 0x500

Section Data

0x200

0x1000

Section In Memory

‘z/

SectionHeader
Misc.VirtualSize = 0x300
SizeOfRawData = 0x200
PointerToRawData = 0x500
VirtualAddress = 0x1000

Section Data From Disk

Zero-initialized data

0x300

46

Section Header 4

Why would SizeOfRawData be greater than
VirtualSize?

Remember that PE has the notion of file
alignment.(OptionalHeader.FileAlignment) T herefore, if
you had a FileAlignment of 0x200, but you only
had 0x100 bytes of data, the linker would have
had to write 0x100 bytes of data followed by
0x100 bytes of padding.

By having the VirtualSize < SizeOfRawData,
the loader can say “ok, well | see | really only
need to allocate 0x100 bytes of memory and
read 0x100 bytes of data from disk.”

47

VirtualSize < SizeOfRawData

(on your own slide, draw the correspondence between the 0x200 in the first picture and the 0x100 in the second))

Section On Disk Section In Memory
0 0
Section Header Section Header
VirtualSize = 0x100 VirtualSize = 0x100
SizeOfRawData = 0x200 SizeOfRawData = 0x200
PointerToRawData = 0x500 PointerToRawData = 0x500
VirtualAddress = 0x1000

TR

Section Data Section Data 0x100

0x500

Section Header 5

(from winnt.h)

» Characteristics tell you something about the

section. Examples:

#define IMAGE SCN_CNT CODE

// Section contains code.

#define IMAGE SCN_CNT INITIALIZED DATA
// Section contains initialized data.
#define IMAGE SCN CNT UNINITIALIZED DATA
// Section contains uninitialized data.
#define IMAGE SCN_MEM DISCARDABLE

// Section can be discarded.

#define IMAGE SCN MEM NOT PAGED

// Section is not pageable.

#define IMAGE_SCN_MEM SHARED

// Section is shareable.

#define IMAGE SCN MEM EXECUTE

// Section is executable.

#define IMAGE SCN_MEM READ

// Section is readable.

#define IMAGE SCN_MEM WRITE

// Section is writeable.

0x00000020

0x00000040

0x00000080

0x02000000

0x08000000

0x10000000

0x20000000

0x40000000

0x80000000

49

Section Header

 PointerToRelocations,
PointerToLinenumbers,
NumberOfRelocations,
NumberOfLinenumbers aren’ t used anymore

50

scratch Property Pages m

V‘ Platform: ’Active(WinSZ)

Renaming Sections

Configuration: lActive(Release)

V‘ [Configuration Manager...]

<

= CJC++

General

Optimization
Preprocessor

Code Generation
Language
Precompiled Headers

Qutput Files
Browse Information
Advanced
Command Line
(=) Linker
General
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Advanced
Command Line
[+ Manifest Tool

[+ XML Document Generator

[+ Browse Information

Higin

v

Entry Point

Mo Entry Point

Set Checksum

Base Address
Randomized Base Address
Fixed Base Address

Data Execution Prevention (DEP)
Turn OFf Assembly Generation
Delay Loaded DLL

Import Library
Merge Sections
Target Machine
Profile

CLR Thread Attribute

CLR Image Type
Key File

Key Container
Delay Sign

Error Reporting
CLR Unmanaged

Merge Sections

Code Check

MNo
No

Enable Image Randomization {/DYNAMICBASE)
Default

Image is compatible with DEP {/NXCOMPAT)
Mo

Don't Support Unload

.text=.xeno

MachineX86 (/MACHINE:X86)
Mo

Mo threading attribute set
Default image type

MNo

Prompt Immediately (fERRORREPORT:PROMPT)

No

Causes the linker to merge section 'from' into section 'to'; if section 'to' does not exist, section 'from' is

renamed as 'to’,

(/MERGE:[from=ta])

[ok

][Cancel][

Apply

23]

=§ ccratch.exe

IMAGE_DOS_HEADER

MS-DOS Stub Program
IMAGE_NT_HEADERS
IMAGE_SECTION_HEADER .xeno
IMAGE_SECTION_HEADER .rdata
IMAGE_SECTION_HEADER .data
IMAGE_SECTION_HEADER .reloc
SECTION .xeno

SECTION .rdata

SECTION .data

SECTION .reloc

51

Merge Sections

[+ Common Properties Entry Point O
(=) Configuration Properties Mo Entry Point No scratch.exe B E F R E
General Set Checksum No IMAGE_DOS_HEADER
Debugging Base Address ; MS-DOS Stub Program
+- CIC++ : - #- IMAGE_NT_HEADERS
- Randomized Base Address Enable Image Randomization (/DYNAMICBASE) IMAGE SECTION HEADER text
= Linker Fixed Base Address Generate a relocation section (/FIXED:NO) IMAGE SECTION HEADER rdata
fe”et'a' Data Execution Prevention (DEP) Image is compatible with DEP (JNXCOMPAT) IMAGE _SECTION HEADER .data
h;“"f fest Fil Turn OFf Assembly Generation Mo IMAGE_SECTION_HEADER .rsrc
ni i
Deabu esin © Delay Loaded DLL Don't Support Unload IMAGE_SECTION_HEADER .reloc
Systegn? : Import Library SECTION text
L Merge Sections rdata=.datal - SECTION .rdata
Optimization . - SECTION data
Embedded IDL Target Machine MachineXx86 {/MACHINE:X86) SECTION rerc
Advanced Profile No & SECTION relac
Command Line CLR Thread attribute Mo threading attribute set
[+ Manifest Tool CLR Image Type Default image type
[+~ ¥ML Document Generator Key File
[+ Browse Information Key Container
[+ Build Events Delay Sign Mo
- Custom Build Step Error Reporting Prompt Immediately {JERRORREPORT:PROMPT)
CLR Unmanaged Code Check Mo scratch.exe AFT E R
Merge Sections IMAGE_DOS_HEADER
Causes the linker to merge section 'from' into section 'to'; if section 'to’ does not exist, section 'from’ is i MS-DOS Stub Program
renamed as 'to’. (fMERGE:[from=ta]) - IMAGE_NT_HEADERS
IMAGE_SECTION_HEADER .text

IMAGE_SECTION_HEADER .data
IMAGE_SECTION_HEADER .rsrc
IMAGE_SECTION_HEADER .reloc
SECTION .text

#- SECTION .data

4 SECTION .rsrc

#- SECTION .reloc

scratch.c
Linking. ..
LINK : warning LNEK4Z54: section '.rdata' (40000040) merged into '.data' (CO0000040) with different attributes

52

Which fields do we even
care about, and why?

typedef struct IMAGE FILE HEADER {
WORD Machine;
WORD NumberOfSections;
DWORD TimeDateStamp;
DWORD PointerToSymbolTable;
DWORD NumberOfSymbols;
WORD SizeOfOptionalHeader;
WORD Characteristics;
} IMAGE FILE HEADER, *PIMAGE FILE HEADER;

Static Linking vs Dynamic Linking

« With static linking, you literally just include a
copy of every helper functionyou use inside the
executable you're generating.

* Dynamic linking is when you resolve pointers to
functions inside libraries at runtime.

* Needless to say, a statically linked executable
IS bloated compared to a dynamically linked
one. But on the other hand, it's standalone,
without outside dependencies. But on the other
other hand, patches or fixes to libraries are not
applied to the statlcall¥_ linked binary until it's re-
linked, so it can potentially have vulnerable
code long after a library vulnerability is patched.

* Going to learn a bunch about how dynamic
linking works, in service to learning a bit about

how It Is abused. N

Calling Imported Functions

* As a programmer, this is transparent to
you, but what sort of assembly does the
compiler actually generate when you
call an imported function like printf()?

* We can use the handy-dandy
HelloWorld.c to find out quickly.

printf("Hello World!\n");

004113BE 8B F4 mov esi,esp

004113C0 68 3C 57 41 00 push 41573Ch

004113C5 FF 15 BC 82 41 00 call dword ptr ds:[004182BCh]

(Note to self, show imports in PEView too)

95

IMAGE_DIRECTORY_ENTRY_IMPORT

struct _IMAGE_DATA_DIRECTORY {
0x00 DWORD VirtualAddress;
0x04 DWORD Size;

)

FINERIVRLL
Risesicat

STEETER
22977821

i

va

¥

P T .

IMAGE_DIRECTORY_ENTRY_IMPORT

struct _IMAGE_DATA_DIRECTORY {
0x00 DWORD VirtualAddress;
0x04 DWORD Size;

| Portable Executable Format |

—) W Cse LBl v @A St
— SouCue PNl T By e Jwe

Lot \ochetnd or Mon Cec 38 2000

Image by Ero Carrera

- £_IMPORT_DESCRIPTOR{
ion {
'»
0x00 D
F RVAt0 o
e i 0x00 inalFir
N e e . Jus

=] struct _IMAGE_IMPORT _DESCRIPTOR {
0x00 union{
/* 0 for terminating null import descriptor */

5= 0x00 DWORD Characteristics;
/* RVA to original unbound IAT */

==+ 0x00 PIMAGE_THUNK_DATA OriginalFirstThunk;

:‘ = _' } u;

- 10x04 DWORD TimeDateStamp; /* 0 if not bound,

— * -1 if bound, and real date\time stamp
B e * in IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT
5= * (new BIND)

* otherwise date/time stamp of DLL bound to

* (Old BIND)

*/

~—-| 0x08 DWORD ForwarderChain; /* -1 if no forwarders */
.~ 0x0c DWORD Name;

e /* RVAto IAT (if bound this IAT has actual addresses) */
== PIMAGE_THUNK_DATA FirstThunk;

!

it

Image by Ero Carrera

Import Descriptor

(from winnt.h)

typedef struct IMAGE IMPORT DESCRIPTOR {

union {
DWORD Characteristics; //
DWORD OriginalFirstThunk; //
}i
DWORD TimeDateStamp; //
//
//
//
DWORD ForwarderChain; //
DWORD Name;
DWORD FirstThunk; //

} IMAGE_ IMPORT DESCRIPTOR;

| think they meant “INT”

0 for terminating null\import descriptor
RVA to original unbound IAT (PIMAGE THUNK DATA)

0 if not bound,
-1 if bound, and real date\time stamp

in IMAGE DIRECTORY_ENTRY BOUND_ IMPORT (new BIND)
O0.W. date/time stamp of DLL bound to (0ld BIND)

-1 if no forwarders

RVA to IAT (if bound this IAT has actual addresses)

« While the things in blue are the fields filled in for the most common case, we
will actually have to understand everything for this structure, because you

could run into all the variations.

58

Import Descriptor 2

 OriginalFirstThunk (“is badly named”
according to Matt Pietrek) is the RVA of
the Import Name Table (INT). It' s so
named because the INT is an array of
IMAGE_THUNK_ DATA structs. So this
field of the import descriptor is trying to
say that it’ s pointing at the first entry in
that array.

59

Import Descriptor 3

* FirstThunk like OriginalFirstThunk except
that instead of being an RVA which points
into the INT, it’ s pointing into the Import
Address Table (IAT). The IAT is also an
array of IMAGE_THUNK DATA structures
(they’ re heavily overloaded as we’ Il see).

 Name is just the RVA which will point at
the specific name of the module which
imports are taken from (e.g. hal.dll,
ntdll.dll, etc)

60

typedef struct _IMAGE_THUNK_DATA {
e union {

=2 | 0x00 LPBYTE ForwarderString;

o= | 0x00 PDWORD Function;

| 0x00 DWORD Ordinal;

=== 0xX00 PIMAGE_IMPORT_BY_NAME AddressOfData;

yut;
} IMAGE_THUNK_DATA,*"PIMAGE_THUNK_DATA;

typedef struct _IMAGE_IMPORT_BY_NAME {
0x00 WORD Hint;

0x02 BYTE Namel[1];

} IMAGE_IMPORT_BY_NAME,*PIMAGE_IMPORT_BY_NAME;

ble Executable Format |

Image by Ero Carrera

IMAGE_THUNK_DATA

(from winnt.h)

typedef struct IMAGE THUNK DATA32 {

union {

DWORD ForwarderString; // PBYTE

DWORD Function; // PDWORD

DWORD Ordinal;

DWORD AddressOfData; // PIMAGE_IMPORT_ BY NAME
} ul;

} IMAGE THUNK DATA32Z;

We just learned that both the INT (pointed to by
OriginalFirstThunk) and the IAT (pointed to by FirstThunk) point
at arrays of IMAGE_THUNK_ DATA32s.

The INT and IAT IMAGE_THUNK DATAS32 structures are all
interpreted as pointing at IMAGE_IMPORT_BY_ NAME
structures to begin with. That is they are u1.AddressOfData.
This is actually the RVA of an IMAGE_IMPORT_BY_NAME

structure.
62

IMAGE_IMPORT_BY_NAME

(from winnt.h)

typedef struct IMAGE IMPORT BY NAME {
WORD Hint;
BYTE Name[1l];
} IMAGE IMPORT BY NAME, *PIMAGE IMPORT BY NAME;

» Hint specifies a possible “ordinal” of an
imported function. Talked about later,
when we talk about exports, but basically
it's just a way to look up the function by an
iIndex rather than a name.

 Name on the other hand is to look up the
function by name. It's not one byte long,
it's a null terminated ASCII string which
follows the hint. But usually it's just null in
our examples.

63

On the impersistence of being: INT vs IAT

 The INT IMAGE THUNK DATA structures
are always interpreted as pointing at
IMAGE _IMPORT_BY_ NAME structures,
that is they are u1.AddressOfData, the
RVA of an IMAGE IMPORT_ BY NAME.

 The IAT IMAGE THUNK DATA structures
start out are all interpreted as the
u1.AddressOfData, but once the OS
loader resolves each import, it overwrites
the IMAGE THUNK DATA structure with
the actual virtual address of the start of the
function. Therefore it is subsequently
interpreted as u1.Function.

64

|mp0rt data Import Names Table Import Address Table
(IMAGE_THUNK DATA array) (IMAGE_THUNK DATA array)
structures

ON DISK —> 0x014B, loDeleteSymbolicLink <—

> 0x040B, RitlInitUnicodeString <—

—> 0x01DA, lofCompleteRequest <—

Array of IMAGE_IMPORT_BY_NAME
Structures stored wherever in the file

IMAGE_IMPORT_DESCRIPTOR
OriginalFirstThunk

TimeDateStamp

ForwarderChain

— [y

FirstThunk
0
0
Zero-filled
0 IMAGE_IMPORT_DESCRIPTOR
entry terminates the array
0
0 65

- Graphical style borrowed from the Matt Pietrek articles

|mp0rt data Import Names Table Import Address Table

(IMAGE_THUNK_DATA array) (IMAGE_THUNK_DATA array)
structures
IN MEMORY > 0x014B, loDeleteSymbolicLink s
AFTER IMPORTS > 0x040B, RtlinitUnicodeString S
RESOLVED —> 0x01DA, lofCompleteRequest —>

Array of IMAGE_IMPORT_BY_NAME \—Y—}

Structures stored wherever in the file

IMAGE_IMPORT_DESCRIPTOR
IAT entries now

OriginalFirstThunk point to the full
TimeDateStamp virtual addresses
where the
ForwarderChain functions are
Name found in the other
; m modules (just
FirstThunk ntoskrnl.exe in
- this case)
0
0
Zero-filled
0 IMAGE_IMPORT_DESCRIPTOR
entry terminates the array
0
0 66
- Graphical style borrowed from the Matt Pietrek articles

Look through null.sys

(note to self: start from the data directory)

= null.sys

IMAGE_DOS_HEADER
MS-DOS Stub Program

= IMAGE_NT_HEADERS

Signature

IMAGE_FILE_HEADER

IMAGE_OPTIONAL_HEADER
IMAGE_SECTION_HEADER .rdata
IMAGE_SECTION_HEADER .data
IMAGE_SECTION _HEADER PAGE
IMAGE_SECTION _HEADER INIT
IMAGE_SECTION_HEADER .rsrc
IMAGE_SECTION_HEADER .reloc
SECTION .rdata

IMPORT Address Table

IMAGE_DEBUG_DIRECTORY

IMAGE_DEBUG_TYPE_CODEVIEW
SECTION .data
SECTION PAGE

= SECTION INIT

IMPORT Directory Table
IMPORT Name Table
IMPORT Hints/Names & DLL Names

RWA Data Description Value
00000610 00000638 Import Name Table RVA
00000614 00000000 Time Date Stamp
00000618 00000000 Forwarder Chain
00000B1C 000006D4 Mame RWA ntoskml.exe
00000620 00000300 Import Address Table RVA
00000624 00000000
00000623 00000000
00000B2C 00000000
00000630 00000000
00000634 00000000

67

|mp0rt data Import Names Table Import Address Table

(IMAGE_THUNK_DATA array) (IMAGE_THUNK_DATA array)
structures
ON DISK > 0x0001, ExReleaseFastMutex <—
> 0x004E, KfRaiselrq| <—
—> 0x004D, KfLowerlrql <— J
g |5 0x029D, MmLockPagableDataSection <
IMAGE_IMPORT_DESCRIPTOR —> e e e e <
OriginalFirstThunk s 0x02BC, MmUnlockPagablelmageSection ¢ |
TimeDateStamp e Array of IMAGE_IMPORT_BY_NAME

Structures stored wherever in the file
ForwarderChain

FirstThunk

OriginalFirstThunk ———
TimeDateStamp
ForwarderChain

Name 4 HAL.dII

FirstThunk

68
Graphical style borrowed from the Matt Pietrek articles

|mp0rt data Import Names Table Import Address Table

fruct (IMAGE_THUNK_DATA array) (IMAGE_THUNK_DATA array)
Structiures
IN MEMORY —> 0x0001, ExReleaseFastMutex —>
AFTER IMPORTS > 0x004E, KfRaiselrg| s
RESOLVED —> 0x004D, KfLowerlrql >
> —>
-y 0x029D, MmLockPagableDataSection S
IMAGE_IMPORT_DESCRIPTOR —> e e e e — >
OriginaIFirstThunk S 0x02BC, MmUnlockPagablelmageSection N
TimeDateStam e Array of IMAGE_IMPORT_BY_NAME e \—V—/
P Structures stored wherever in the file
ForwarderChain IAT entries now
Name > m point to the full
. virtual
FirstThunk addresses
OriginalFirstThunk —— where the

functions are
TimeDateStamp found in the

ForwarderChain other modules

Name 4 HAL.dII

FirstThunk 69

Graphical style borrowed from the Matt Pietrek articles

Look through beep.sys

= beep.sys RWA Data Description
IMAGE_DOS_HEADER 00000880 000008D4 Import Mame Table RWVA
MS-DOS Stub Program 00000584 00000000 Time Date Stamp
+ IMAGE_NT_HEADERS 00000888 00000000 Forwarder Chain
IMAGE_SECTION_HEADER .text 00000ssC 00000ASS Name RVA ntoskrnl.exe
IMAGE_SECTION_HEADER .rdata 00000830 00000798 Import Address Table RVA
IMAGE_SECTION_HEADER INIT 00000894 000008BC Import Name Table RVA
IMAGE_SECTION_HEADER .rsrc 00000895 00000000 Time Date Stamp
IMAGE_SECTION_HEADER .reloc 0000083C 00000000 Forwarder Chain
SECTION .text 000003A0 OODODAFC Name RVA
= SECTION .rdata 000008A4 00000780 Import Address Table RVA
IMPORT Address Table 000003A3 00000000
IMAGE_DEBUG_DIRECTORY 00000BAC 00000000
IMAGE_DEBUG_TYPE_CODEVIEW 000008B0 00000000
= SECTION INIT 00000564 00000000
IMPORT Directory Table 00000363 00000000
IMPORT Name Table
IMPORT Hints/Mames & DLL Names
#- SECTION .rsrc
#- SECTION .reloc

70
nt then hal, no special significance, just sayin’

Look through beep.sys 2

= beep.sys

&

(1

=

J

I+

&

IMAGE_DOS_HEADER

MS-DOS Stub Program

IMAGE_NT_HEADERS

IMAGE_SECTION_HEADER .text

IMAGE_SECTION_HEADER .rdata

IMAGE_SECTION_HEADER INIT

IMAGE_SECTION_HEADER .rsrc

IMAGE_SECTION_HEADER .reloc

SECTION .text

SECTION .rdata
IMAGE_DEBUG_DIRECTORY
IMAGE_DEBUG_TYPE_CODEVIEW

SECTION INIT

SECTION .rsrc

SECTION .reloc

Data Description Value
DDUDO?BD 00000ADD Hint/Name RWA 0001 ExReleaseFasthMutesx
00000734 00000ACZ Hint/Name RVA 004E KfRaiselrgl
00000758 0000DAB4 Hint/Mame RWA 004D KfLowerlrgl
0000073C 00000AAG Hint/Name RVA 001B HalMakeBeep
00000790 ODODDAEGE Hint/Name RWA, 0000 ExAcquireFastMutesx
00000794 00000000 End of Imports HAL. dll
00000793 00000SAC Hint/Name RWA 029D MmLockPagableDataSection
0000073C 000003CE Hint/Name RWA 01EE KeCancelTimer
000007 AD 00000SDE8 Hint/Name RWVA 02BC MmUnlockPagablelmageSection
000007 A4 000009FE Hint/Name RWA 0184 loStartNextPacket
000007 A3 0000DADA Hint/Mame RWA 0254 KeSetTimer
000007 AC 0000DATE Hint/Name RWA 055E _allmul
000007 B0 0000093C Hint/Mame RVA 01B6 loStartPacket
000007 B4 00000A34 Hint/Name RWA 020C KelnitializeEvent
000007 B8 00000A48 Hint/Mame RVA 0213 KelnitializeTimer
000007BC 0000DASC Hint/Name RWA 020B KelnitializeDpc
000007 Co 00000ABE Hint/Name RVA 0138 loCreateDevice
000007 C4 0000DASD Hint/Name RWA 040B RtlinitUnicodeString
000007 C8 00000932 Hint/Name RVA 0116 loAcquireCancelSpinLock
0oooo7CC 0000096C Hint/Name RVA 023A KeRemoveDeviceQueue
00000700 00000950 Hint/Name RWVA 0238 KeRemoveEntryDeviceQueue
000007 D4 00000936 Hint/Name RWVA 0199 loReleaseCancelSpinLock
000007 D3 00000A22 Hint/Name RWA 0149 loDeleteDevice
000oo7DC 00000920 Hint/Name RVA 01DA lofCompleteRequest
000007 ED 00000000 End of Imports ntoskrnl exe

hal then nt, no special significance, just sayin’ it's 7

backwards from the previous

Lab: telnet.exe

telnet.exe was chosen because it has
only normal imports; no “bound” or
“delayed” imports as will be talked
about later

View imports with PEView
Open telnet.exe

View imports in memory by attaching
with WinDbg

72

Open WinDbg

From Start Menu

@ Debuagging Help
™ Global Flags
=] Release Motes

f}l Uninstall Debuaging Tools for Windows (x86)
82 WinDbg

%] WinDbg: 6.10.0003.233 XB86 Open Executable
Fil it Wi i - .
|8 Edit View Debug Window Help Lookin: | £ system32 - e L? e ,
Open Source File... Ctrl4+0O
Close Current Window Ctri+F4 Tlsvchost.exe Tlsystray.exe Cltepsves.exe §
ﬁ Syncapp.exe [taskkill.exe ﬁtelnet.exe E
Open Executable. . Ctrl+E sysedit.exe Etasklist.exe Btftp.exe E
Attach to a Process... F6 =5 syskey.exe ﬁtaskman.exe Etlntadmn.exe E
Open Crash Dump...) Ctrl+D if)sysocmgr.exe Qtaskmgr.exe Etlntsess.exe E
Connect to Remote Session... Ctr+R ﬁsysteminfo.exe lﬁtcmsetup.exe lﬁtlntsw.exe E
Connect to Remote Stub...
Kernel Debug... Ctrl+K ¢ | >
File name: C:AWINDOWShsystem32\telnet. exe ~ Open
Files of type: | Executable Files v Cancel

1 Kernel ‘com:port=com1 ,baud=115200" - WinDbg:6.10.0003.233 X86
File Edit WYew Debug Window Help

B - o =g HE e

ommand - Kernel ‘com:port=com1,baud=115200" - WinDbg:6.10.0003.233 X86

Hicro=soft (R) Windows Debugger Version 6.10.0003.23
Copyvright (c) Microsoft Corporation. All rights reg

Opened N . SNcoml

Waiti t LA
ngnéggedotgeﬁggggﬁs P 2600 =86 comp Mouse over to see g 2010 (GMT-5)). ptr6d4 FALSE

Kernel Debugger connection establishe (’ - - 'f []_ l]
Symbol search path is: SREV*C: \WINDOWS bad/symbols
Executable search path is: escrlptlon o W Ic

Windows XP Kernel Version 2600 (Servi t f. - (j -t ble
Product: WinNt, suite: TerminalServer

Built by: 2600 .=xpsp_sp2_gfe.070227-23 ype o Wln OW I
Machine Hame: o ens u
Kernel base = 0x804d7000 PsLloadedMody

Debug =session time: Sat Jan 16 15:42:;4.UE! R e
System Uptime: 0 days 0:38:17.921

Break instruction exception — code 80000003 {(first chance)
36 36 36 36 36 I I I I I I I 6 I I I I I I I I I I 6 I 6 I I I I I I I I I I 6 I I I I 36 I 36 I 636 6 I 3636 I 36 I 36 I 36 I 636 6 36 I 36 36 36 36 3636 363 63 633 ¥

* *
%* You are seeing this message because you pressed either *
%* CTRL+C {(i1f wou run kd.e=xe) or, *
* CTRL+BREAK {(if wou run WinDBG), *
* on your debugger machine's keyboard. *
* ¥*
* THIS IS HOT A BUG OR A SYSTEM CRASH *
* *
* If you did not intend to break into the debugger. press the "g" key, then %*
* press the "Enter" key now. This message might immediately reappear. If it =
* does, press "g" and "Enter" again. *
* *

636 36 36 36 36 36 36 36 36 36 I I6 I 6 36 36 36 36 I I6 36 6 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 6 36 36 36 36 36 36 36 6 36 6

nt |RtlpBreakWithStatusInstruction:
80522980 cc int 3

kd> |

Ln0, Col 0 Sys 0:KdSrv:S Proc 000:0 Thrd 000:0 A5 | CA MUM

%1 Kernel ‘com: port=com1,baud=115200" - WinDbg: 6.10.0003.233 X86 M (=3
I B2 Registers - Kernel ‘com:port=com1 ,baud=115200" - WinDbg:6.10.0003.233 X86

Value

0

30

23

23
664c0lfb

5430? 10 (GHT-5)).

38

80552780 Eywbols
1
80550320
80522980
g

202
805503b0
10

fE££0££0
400
1f6
)
437
3f8
2780
1
3c0
a980
202

< 0] | 3
kd> | 75
Ln0, Col 0 Sys 0:KdSrv:S Proc 000:0 Thrd 000:0 A5k OVE CAPS MNUM

1 Kernel ‘com:port=com1 ,baud=115200" - WinDbg:6.10.0003.233 X86
B2 Registers - Kernel ‘com:port=com1,baud=115200"

Customize. ..

Customize Register List

Enter reqister names in Otder separated by whitespace.
Reaisters not named will be placed at the end of the list.

- WinDbg:6.10.0003.233 X86

[eax ebx ecx edx edi esn ebp esp eip cs 58 d

diaik spbldlclal
bh dh ch ah fpcw fpsw fptws fopcode fplp fpipsel fpdp
fpdpsel st st1 st2 st3 std st st6 st7 mm0 mm1 mm2
mm3 mmd mmS mmb mm? mxcsr xmm0 xmm1 <mm2
#mm3 #mmd xmmS =mmb xmm? iopl of df if tf sf zf af pf cf
vip vif o0 cr2 cr3 crd gdtr adtl idtr idtl tr Idtr

[] Display modified register values first
[Do not display subregisters

=ymbols

dr0
drl
dr?

dr3

dré
dr?
di
=1
bx
d=

fE££0££0
400
1f6
5
43c7
3f8
2780
1
3c0
a980
202

1l |

10 (GHT-5)).

bl

[4s)

" Ln0, Col0 Sys 0:KdSrv:S Proc 000:0 Thrd 000:0 ~50 OVR

CAPS |

MUM

%] Kernel ‘com:port=com1,baud=115200" - WinDbg:6.10.0003.233 X86
File Edit View Debug Window Help

B e A G ") DRRAEOREOOR [A

Registers e (X
Customize...

Reg Value e
eax 1 =
ebx 243c? =
ecx 80552780

edx 3f8

edi 664c01f6

esi 5

ebp 8055030

esp 805503b0

eip 80522980

cs 8

== 10

ds 23

efl 202 v

CTRL4+C (i1f wou run kd.e=xe) or.
CTRL+BREAK (if wou run WinDBG),
on yvour debugger machine's kevboard.

THIS IS NOT A BUG OR A SYSTEM CRASH

If you did not intend to break into the debugger, press the "g" key, then
press the "Enter" key now. Thi=s message might immediately reappear. If it
does, press "g" and "Enter" again.

K K % % K K k %k X
¥ K K K % K K K Xk X

I 36 36 36 6 36 I I 6 36 I I 6 36 I I 6 36 36 I I6 3636 I I6 3636 I I6 36 36 I I 36 36 36 I 6 36 36 I6 6 36 36 36 6 36 36 36 36 36 36 36 36 36 36 36 I 36 36 36 36 36 36 36 I6 36 36 36 36 6 36 36 36 6 363 ¥

nt |RtlpBreaklWithStatusInstruction:
8052a980 cc int 3

i |L >
kd> | T

Ln0, Col 0 Sys 0:KdSrv:S Proc000:0 Thrd 000:0 A5k OVE L CAPS NUM

&1 Kernel ‘com:port=com1 ,baud=115200" - WinDbg:6.10.0003.233 X86

File Edit View Debug Window Help

B 0 o0 A HAn G M DFREOPFEO0E 213 Ay o

ebx 243c7
ecx 80552780

edx 3f8
edi f64c0lf6
esi 5

ebp 8055030
esp 805503b0
eip 8052a980
cs 8
== 10
23

z]Be

Typecast Locations Customize...
Name Value Reg Value N
eax 1 E)

%]
* CTRL+BREAK (if wou run WinDBG), * ~
* on your debugger machine's keyboard. %* D
* *
* THIS IS HOT A BUG OR A SYSTEM CRASH *
* *
%* If you did not intend to break into the debugger, press the "g" key, then %*
* press the "Enter" key now. This message might immediately reappear. If it
* does, press "g" and "Enter" again. %*
* *
6 I 36 I 36 6 I 6 I 6 I HHEH =
nt |RtlpBreakWithStatusInstruction: 3
80522980 cc int 3 L
b
<_ 111 l
Disassembly HCommand ‘ 78
Ln0, Col0 Sys 0:KdSrv:S Proc 000:0 Thrd 000:0 A5/ OVE L CAPS NUM

If “Source mode
on” is clicked,
when you step, it
will step one
source line at a
time (assuming
you have source)

Step intoJ Step over

———

LStep out

If “Source mode
off” is clicked,
when you step,
it will step one
asm instruction

at a time

|File Edit View Debug ‘Window M \/

= 'gl'i(}'i?é'in [ARDE S @\@@@D@DD@
[L 7 A — [Frow T Nlri] !S;ource mode off
vr . revious = Hsknmize. ..
Continue Stop debugging S Il el o
wherever the

Restart debugging

cursor is currently

WinDbg breakpoints

bp <address> : Set breakpoint

— Address can be number or human readable input
like “main” or “Example1:main”

bl : Breakpoints list

bd <bp ID> : Breakpoint disable

— <bp ID> as given by first column of bl

be <bp ID> : Breakpoint enable

— <bp ID> as given by first column of bl

bc <bp ID> : Breakpoint clear (delete)

— Can do "bc *" to delete all breakpoints

SIRETER

WSS W A

T

struct _IMAGE_DATA_DIRECTORY {
0x00 DWORD VirtualAddress;

[-
- .

e

0 e B T 0 e P

S s o A ——
e Ssem—ng e ——
- st - v

1% M g e B R
o al
—— e Ty e o)
. - %e T o e W d e ©
L)

0x04 DWORD Size;

IMAGE_DIRECTORY_ENTRY_IAT

struct _IMAGE_DATA_DIRECTORY {
0x00 DWORD VirtualAddress;
0x04 DWORD Size;

b

e

FEEE

T

| Portable Executable Format |

O . waa e
— SuCue pored Ty Te puwe
Lanvt vocheied or Mon Cec 25 X005

Image by Ero Carrera

IAT Hooking

 When the IAT is fully resolved, it is
basically an array of function pointers.
Somewhere, in some code path, there’s
something which is going to take an IAT
address, and use whatever's in that
memory location as the destination of the
code it should call.

* What if the "whatever’s in that memory
location™ gets changed after the OS loader
iIs done? What if it points at attacker code?

82

JAT Hooking 2

» Well, that would mean the attacker’ s code
would functionally be “man-in-the-middle”ing
the call to the function. He can then change
parameters before forwarding the call on to the
original function, and filter results that come
back from the function, or simply never call the
original function, and send back whatever
status he pleases.

— Think rootkits. Say you' re calling OpenFile. It

looks at the file name and if you' re asking for a file
it wants to hide, it simply returns “no file found.”

* But how does the attacker change the IAT
entries? This is a question of assumptions
about where the attacker is.

83

IAT Hooking 3

* In a traditional memory-corrupting exploit, the attacker is, by
definition, in the memory space of the attacked process, upon
successfully gaining arbitrary code execution. The attacker can
now change memory such as the |IAT for this process only,
because remember (from OS class or Intermediate x86) each
process has a separate memory space.

» |If the attacker wants to change the IAT on other processes, he
must be in their memory spaces as well. Typically the attacker
will format some of his code as a DLL and then perform “DLL
Injection” in order to get his code in other process’ memory
space.

* The ability to do something like DLL injection is generally a
prerequisite in order to leverage IAT hooking across many
userspace processes. In the kernel, kernel modules are
generally all sharing the same memory space with the kernel,
and therefore one subverted kernel module can hook the IAT of
any other modules that it wants.

84

DLL Injection

» See http://en.wikipedia.org/wiki/
DLL injection for more ways that this
can be achieved on Windows/*nix

« We’ re going to use the Applnit_ DLLs
way of doing this, out of laziness

* (Note: Applnit DLLs' behavior has
changed in releases > XP, it now has to
be enabled with Administrator level
permissions.)

85

Lab: IAT hooking

* http://www.codeproject.com/KB/vista/api-hooks.aspx

This will hook NtQuerySystemlInformation(), which is what taskmgr.exe uses in
order to list the currently running processes. It will replace this with
HookedNtQuerySystemInformation(), which will hide calc.exe

I modlilfi?d that code to use IAT hooking rather than inline (which is much simpler
actually

» Steps:

Compile ApplnitHookIAT.dll

Place at C:\AppInitHookIAT.dll for simplicity

Use regedit.exe to add C:\AppInitHookIAT.dll as the value for the key
HKEY LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT

\CurrentVersion\Windows\Applnit_DLLs (if there is already something there,
separate the entries with a comma)

Start calc.exe, start taskmgr.exe, confirm that calc.exe doesn't show up in the list
of running processes.

Remove C:\ApplnitHookIAT.dll from Applnit_DLLs and restart taskmgr.exe.
Confirm calc.exe shows up in the list of running processes.

(This is a basic "userspace rootkit" technique. Because of this, all entries in this
registry key should always be looked upon with suspicion.)
86

Bound Imports

* Import binding is a speed optimization. The
addresses of the functions are resolved at link
time, and then placed into the |AT.

* The binding is done under the assumption of
specific versions of the DLL. If the DLL
changes, then all the |IAT entries will be invalid.
But that just means you have to resolve them,
so you're not much worse off than if you had
not used binding in the first place.

* notepad.exe and a bunch of other stuff in C:
\WINDOWS\system32 are examples

87

¥

Favwvaew
Yinmnsn

ik

HIT

4

e -

B

TE WA 3

-t

0x00

T

0x04

| struct _IMAGE_DATA_DIRECTORY {

_DIRECTORY_ENTRY_BOUND_IMPORT

DWORD VirtualAddress;
DWORD Size;

N\

IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT

struct_IMAGE_DATA_DIRECTORY {
0x00 DWORD VirtualAddress;
0x04 DWORD Size;

¥

=R (___Portable Executable Format__]

. waa e

~

-~
_’
Lot \oceed or Mon Cec 38 2000

SuCue pored Ty Te puwe

Image by Ero Carrera

Missing from the picture

« The bound import data directory entry points at an array of
IMAGE_BOUND_ IMPORT_DESCRIPTORSs, ending with an all-zeros
IMAGE_BOUND IMPORT_DESCRIPTOR (like what was done with
IMAGE_IMPORT_DESCRIPTOR)

typedef struct IMAGE_BOUND_IMPORT_DESCRIPTOR {
DWORD TimeDateStamp;
WORD OffsetModuleName;
WORD NumberOfModuleForwarderRefs;
/I Array of zero or more IMAGE_BOUND_FORWARDER_REF follows
} IMAGE_BOUND_IMPORT_DESCRIPTOR, *PIMAGE_BOUND_ IMPORT_DESCRIPTOR;

typedef struct IMAGE_BOUND FORWARDER REF {
DWORD TimeDateStamp;
WORD OffsetModuleName;
WORD Reserved;
} IMAGE_BOUND_FORWARDER_REF, *PIMAGE_BOUND_ FORWARDER_REF;

89

IMAGE_BOUND_IMPORT_DESCRIPTOR

* TimeDateStamp is just the value from the
FileHeader as we would expect.

« OffsetModuleName is not an RVA, it' s
the offset from the beginning of the first
IMAGE_BOUND IMPORT DESCRIPTOR

* We are going to return to
NumberOfModuleForwarderRefs and
IMAGE BOUND FORWARDER REF

after we learn about forwarded functions.

90

Notepad.exe’ s IMAGE_BOUND_ IMPORT_DESCRIPTOR array

= notepad.exe

IMAGE_DOS_HEADER
MS-DOS Stub Program

= IMAGE_NT_HEADERS

Signature

IMAGE_FILE_HEADER

IMAGE_OPTIONAL_HEADER
IMAGE_SECTION_HEADER .text
IMAGE_SECTION_HEADER .data
IMAGE_SECTION_HEADER .rsrc
BOUND IMPORT Directory Table

BOUND IMPORT DLL Names
SECTION .text

SECTION .data
SECTION .rsrc

Non-zero number of forwarder refs

Therefore this ntdll entry is a

IMAGE_BOUND_FORWARDER_REF

Not a

IMAGE_BOUND_IMPORT_DESCRIPTOR

... I didn’ t notice it at first :)

{

WA Data Description Value

01000250 4802A0C9 Time Date Stamp 2008/04/14 Mon 00:09:45 UTC

01000254 0058 Offset to Module Name comdlg32.dll

01000256 0000 MNumber of Module Forwarder Refs

01000258 4802A111 Time Date Stamp 2008/04/14 Mon 00:10:57 UTC

0100025C 0065 Offset to Module MName SHELL32.dlI

0100025E 0000 MNumber of Module Forwarder Refs

01000260 4802A127 Time Date Stamp 2008/04/14 Mon 00:11:19 UTC

01000264 0071 Offset to Module MName WINSPOOL.DRY

01000266 0000 MNumber of Module Forwarder Refs

01000268 4802A094 Time Date Stamp 2008/04/14 Mon 00:08:52 UTC

0100026C 007E Offset to Module MName COMCTL32.dll

0100026E 0000 MNumber of Module Forwarder Refs

01000270 4802A094 Time Date Stamp 2008/04/14 Mon 00:08:52 UTC

01000274 00sB Offset to Module Name msvcrt. dll

01000276 0000 MNumber of Module Forwarder Refs

01000278 4802A0B2 Time Date Stamp 2008/04/14 Mon 00:09:22 UTC

0100027 C 0096 Offset to Module MName ADVAPI32.dI

0100027E 0000 MNumber of Module Forwarder Refs

01000280 4802A12C Time Date Stamp 2008/04/14 Mon 00:11:24 UTC

01000284 00A3 Offset to Module Mame KERMNEL32.dIl
iy (1001 Number of Module Forwarder Refs

01000268 4802A12C Time Date Stamp 2008/04/14 Mon 00:11:24 UTC

0100028C 00BO Offset to Module Name NTDLL.DLL

0100028E 0000 Reserved

01000290 4802A0BE Time Date Stamp 2008/04/14 Mon 00:09:34 UTC

01000294 0oBA Offset to Module Name GDI32.dll

01000296 0000 Mumber of Module Forwarder Refs

01000293 4802A11B Time Date Stamp 2008/04/14 Mon 00:11:07 UTC

0100029C 0oc4 Offset to Module Name USER32.dll

0100029E 0000 MNumber of Module Forwarder Refs

01000240 00000000

01000244 0000

01000245 0000

Notepad.exe’ s IAT with bound imports

(= notepad.exe

IMAGE_DOS_HEADER
MS-DOS Stub Program
IMAGE_NT_HEADERS
IMAGE_SECTION_HEADER .text
IMAGE_SECTION_HEADER .data
IMAGE_SECTION_HEADER .rsrc
BOUND IMPORT Directory Table
BOUND IMPORT DLL Mames
SECTION text
IMAGE_DEBUG_DIRECTORY
IMAGE_LOAD_CONFIG_DIRECTORY
IMAGE_DEBUG_TYPE_CODEVIEWY
IMPORT Directory Table
IMPORT Name Table
IMPORT Hints/Names & DLL Names
SECTION .data
SECTION .rsrc

WA Data Description Value
01001000 77DDBFEF Virtual Address 01EF RegQueryValueExW
01001004 770DBC1Y Virtual Address 01CA RegCloseKey
01001008 77DFBAZS Virtual Address 0100 RegCreateKey\WW
0100100C 77DFBD0OS VWirtual Address 0139 IsTextUnicode
01001010 77DDYAAB Virtual Address 01EE RegQueryValueExA
01001014 77007842 Virtual Address 01E4 RegOpenKeyExA
01001018 77DDD757 Wirtual Address 01FC RegSetValueE:x\W
0100101C 00000000 End of Imports ADVAPIZ2.dII
01001020 77300270 Virtual Address 0008 CreateStatusWindow\y
01001024 00000000 End of Imports COMCTL32.dlI
01001028 77F2DC19 Virtual Address 0098 EndPage
0100102C J7F44A05 Virtual Address 0000 AbortDoc
01001030 77F2DEAS Virtual Address 0096 EndDoc
01001034 77F1BESF Virtual Address 008C DeleteDC
01001038 77F2F456 Virtual Address 0249 StartPage
0100103C J7F17F9D Virtual Address 01B6 GetTextExtentPoint32VV
01001040 J7F1BEZ28 Virtual Address 002F CreateDCWV
01001044 J7F44B25 Vitual Address 0211 SetAbortProc

92

Notepad.exe’ s IMAGE_IMPORT_DESCRIPTOR array
with bound imports

= notepad.exe

[+

IMAGE_DOS_HEADER
MS-DOS Stub Program
IMAGE_NT_HEADERS
IMAGE_SECTION_HEADER .text
IMAGE_SECTION_HEADER .data
IMAGE_SECTION_HEADER .rsrc
BOUND IMPORT Directory Table
BOUND IMPORT DLL Names
SECTION text
IMPORT Address Table
IMAGE_DEBUG_DIRECTORY
IMAGE_LOAD_COMFIG_DIRECTORY
IMAGE_DEBUG_TYPE_CODEVIEW
IMPORT Name Table
IMPORT Hints/Mames & DLL Names
SECTION .data
SECTION .rsrc

WA Data Description Yalue
01007604 00007930 Import Name Table RVA
01007608 FFFFFFFF Time Date Stamp
0100760C FFFFFFFF Forwarder Chain
01007610 00007 AAC Mame RVA comdlg32.dll
01007614 000012C4 Import Address Table RVA
01007618 00007840 Import Name Table RVA
0100761C FFFFFFFF Time Date Stamp
01007620 FFFFFFFF Forwarder Chain
01007624 00007 AFA MName RWVA SHELL32.dll
01007628 00001174 Import Address Table RVA
0100762C 00007980 Import Name Table RWVA
01007630 FFFFFFFF Time Date Stamp
01007634 FFFFFFFF Forwarder Chain
01007638 00007B3A Name RVA WINSPOOL.DRY
0100763C 000012B4 Import Address Table RVA
01007640 000076EC Import Name Table RVA
01007644 FFFFFFFF Time Date Stamp
01007648 FFFFFFFF Forwarder Chain
0100764C 00007B5E Name RVA COMCTL32.dll
01007650 00001020 Import Address Table RVA

93

How does one go about binding

imports?

« BindlmageEx API, if you want to make your own program to
bind your other programs (why?)

« Windows Installer “Bindlmage” action — ideal case, you bind at
install time, so it will be correct until the next update of Windows.

« Bind.exe? Can’t find it on my dev VM (VC++ 9.0, i.e. 2008
edition) but there’ s plenty of references to it in older documents
(e.g. VC++ 6.0). Seems to be deprecated.

 However, we can use CFF Explorer, so let's do that to our hello
world quick:

Open HelloWorld.exe in CFF Explorer.exe

Goto Data Directories [x] and note the zeros for Bound Import
Directory RVA/Size.

Goto Import Directory and select kernel32.dIl. Note the values in
the FTs(IAT) column.

Go to "Rebuilder" helper plugin, select "Bind Import Table" only and
then select "Rebuild"

Go back to the Data Directories to see the non-zero Bound Import
Directory RVA and go to the Import Directory area to see the

absolute VAs for the imported function addresses. o

Binding vs. ASLR:
THERE CAN BE ONLY ONE!

« Address Space Layout Randomization
makes binding pointless, because if the
ASLR is doing its job, the bindings should
be invalidated most of the time. So you
end up being forced to resolve imports at
load time anyway, and therefore any time

http://www.elfwood.com/

you took to try and validate bound imports -tommartinighiander

3294669.html

was pointless, so you may as well just not
even use them.

« This is why I’ m pretty sure binding is
(going to be?) deprecated, and why
bind.exe disappeared.

95

typedef struct IMAGE OPTIONAL HEADER { From winnt.h

WORD Magic;
BYTE MajorLinkerVersion;
BYTE MinorLinkerVersion;

DWORD SizeOfCode;

DWORD SizeOfInitializedData;
DWORD SizeOfUninitializedData;
DWORD AddressOfEntryPoint;
DWORD BaseOfCode;

DWORD BaseOfData;

DWORD ImageBase;

DWORD SectionAlignment;

DWORD FileAlignment;

WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorImageVersion;

WORD MinorImageVersion;

WORD MajorSubsystemvVersion;

WORD MinorSubsystemVersion;

DWORD Win32VersionValue;
DWORD SizeOfImage;

DWORD SizeOfHeaders;
DWORD CheckSum;

WORD Subsystem;

WORD DllCharacteristics;

DWORD SizeOfStackReserve; WhiCh fields do We even

DWORD SizeOfStackCommit;

DWORD SizeOfHeapReserve; Care about, and Why?

DWORD SizeOfHeapCommit;

DWORD LoaderFlags;

DWORD NumberOfRvaAndSizes;

IMAGE DATA DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE OPTIONAL HEADER32, *PIMAGE OPTIONAL HEADER32Z;

Delay Loaded DLLs

« Specifies that libraries will not even be
loaded into the memory space until the
first time they are used. This can
potentially be a good thing to do for
code

» Setting this option will generate extra
information separate from normal DLL
loading information to the support the
delayed loading.

 Described in detail in the PE section

97

=

)

R IR SRR SR

Linker
General
Input
Manifest File
Debuagging
System
Optirization
Embedded IDL
Advanced
Command Line
Manifest Tool
XML Document Generator
Browse Information
Build Events
Custom Build Step

Midimesy riue
Debuaging
System
Optimization
Embedded IDL
Advanced
Command Line
Manifest Tool
XML Document Generator
Browse Information
Build Events
Custom Build Step

Embed Managed Resource File
Force Symbol References

Delay Loaded DLLs

Assembly Link Resource

| Delay Loaded DLLs

Specifies one or more DLLs for delayed loading; use semi-colon delimited list if more than one.
(/DELAYLOAD:[dIl_name])

Don't Support Unload
Import Library Don't Support Unload
Merge Sections Support Unload (JDELAY:UNLOAD)
Target Machine : 2300 : TADU
Profile No
CLR Thread attribute Mo threading attribute set
CLR Image Type Default image type
Key File
Key Container
Delay Sign Mo
Error Reporting Prompt Immediately (/ERRORREPORT
CLR Unmanaged Code Check Mo

| Delay Loaded DLL 98
Specifies to allow explicit unloading of the delayed load DLLs. (JDELAY:UNLOAD)

- -
-

zml o TEEE.
struct _IMAGE_DELAY_IMPORT_DESCRIPTOR {
== 0x00 DWORD grAttrs;
-~ | 0x04 DWORD szName;
———| 0x08 DWORD phmod;
= | 0x0c DWORD plAT:;
== 0x10 DWORD pINT;

(| 0x14 DWORD pBoundIAT;
—— | 0x18 DWORD pUnloadIAT;
DWORD dwTimeStamp;

Image by Ero Carrera

Delayed Imports

from Delaylmp.H, dunno where he got IMAGE_DELAY_ IMPORT_ DESCRIPTOR from

typedef struct ImgDelayDescr {

DWORD grAttrs; // attributes

RVA rvaDLLName; // RVA to dll name

RVA rvaHmod; // RVA of module handle

RVA rvalIAT; // RVA of the IAT

RVA rvaINT; // RVA of the INT

RVA rvaBoundIAT; // RVA of the optional bound IAT

RVA rvaUnloadIAT; // RVA of optional copy of original IAT
DWORD dwTimeStamp; // 0 if not bound,

// 0.W. date/time stamp of DLL bound to (0ld BIND)
} ImgDelayDescr, * PImgDelayDescr;

We care about rvalAT because it points at a separate IAT where stuff gets filled in as needed.
* Also rvaDLLName just because, you know, it tells us which DLL this is about.

* You can look up the rest on your own later (I recommend you check

http://msdn.microsoft.com/en-us/magazine/cc301808.aspx), but really these fields are just there for the
dynamic linker’ s benefit, so we don’ t care enough to go into any of them. The main takeaway will be about
the procedure for resolving delayed imports.

100

The Delay-Loaded IAT

We care about rvalAT because this points to a separate IAT for
delay-loaded functions only. But it’ s that IAT which is
interesting.

Initially the delay load IAT holds full virtual addresses of stub
code. So the first time you call the delay-loaded function, it first
calls the stub code.

If necessary, the stub code loads the module which contains the
function you want to call. Then it and resolves the address of the
function within the module. It fills that address into the delay
load IAT, and then calls the desired function. So the second
time the code calls the function, it bypasses the dynamic
resolution process, and just goes directly to the desired function.

You can look up the rest on your own later (I recommend you
check
http://msdn.microsoft.com/en-us/magazine/cc301808.aspx), but
these fields are mostly just there for the dynamic linker’ s
benefit, so we don’ t care enough to go into them.

101

Delay Loading

he_IIo

hi
how you doing?

text
call [0x103e6¢c4] <DrawThemeBackground>

call [0x103e6¢c4] <DrawThemeBackground>

stub code
0103540a <DLL Loading and Function Resolution Code>

01035425 mov eax,offset mspaint+0x3e6c¢c4 (0103e6c4)
0103542a jmp mspaint+0x3540a (0103540a)

Delay Load IAT

0103e6c4 | 0x1035425 (DrawThemeBackground)

102

Delay Loading

he_IIo

hi
how you doing?

text
call [0x103e6¢c4] <DrawThemeBackground>

call [0x103e6¢c4] <DrawThemeBackground>

stub code
0103540a <DLL Loading and Function Resolution Code>

01035425 mov eax,offset mspaint+0x3e6c4 (0103e6c4) 2
0103542a jmp mspaint+0x3540a (0103540a)

Delay Load IAT

0103e6c4 | 0x1035425 (DrawThemeBackground)

103

UxTheme.dll Delay Loading

he_IIo

hi

Sad72bef <DrawThemeBackground>

text

call [0x103e6¢c4] <DrawThemeBackground>

call [0x103e6¢c4] <DrawThemeBackground>

stub code &
0103540a <DLl Laadina and Function Resolution Code>

- Ox5ad72bef
01035425 mov eax,offset mspaint+0x3e6c¢c4 (0103e6c4)
0103542a jmp mspaint+0x3540a (0103540a)

Delay Load IAT

0103e6c4 | 0x1035425 (DrawThemeBackground)

104

UxTheme.dll Delay Loading

he_IIo

Sad72bef <DrawThemeBackground> <‘\ gt
—

text
4
call [0x103e6¢c4] <DrawThemeBackground>

call [0x103e6¢c4] <DrawThemeBackground>

stub code
0103540a <DLL Loading and Function Resolution Code>

01035425 mov eax,offset mspaint+0x3e6c¢c4 (0103e6c4)
0103542a jmp mspaint+0x3540a (0103540a)

Delay Load IAT

0103e6c4 | 0x5ad72bef (DrawThemeBackground)

105

mspaint’ s delayed import descriptors

= mspaint.exe RWA Data Description Value
IMAGE_DOS_HEADER 0003»&508 00000001 Attributes
MS-DOS Stub Program 0003A5DC 000075ED0 RWA to DLL Name gdiplus.dll
- IMAGE_NT_HEADERS 0003A5ED 0003F460 RWA to HMODULE
IMAGE_SECTION_HEADER .text 0003A5E4 0003EBD4 RWA to Import Address Table
IMAGE_SECTION_HEADER .data O003ASES 0003A6458 RWVA to Import Name Table
IMAGE_SECTION_HEADER .rsrc O0003ASEC 0003A380 RWA to Bound IAT €«——
= SECTION .text 0003ASFO 00000000 RWA to Unload IAT
IMPORT Address Table 0003A5F 4 00000000 Time Date Stamp
IMAGE_DEBUG_DIRECTORY 0003ASFE 00000001 Attributes
DELAY IMPORT DLL Mames 0003A5FC 000075F0 RWA to DLL Name UxTheme.dll
IMAGE_LOAD_CONFIG_DIRECTORY 0003A600 0003F464 RWA to HMODULE
IMAGE_DEBUG_TYPE_CODEYIEW 0003A604 0003EEC4 RWA to Import Address Table
0003AG08 0003AB38 RVA to Import Name Table
DELAY IMPORT Mame Table O003AG0C 0003A3D0 RWA to Bound IAT €——
DELAY IMPORT Hints/Names 0003A510 00000000 RWA to Unload IAT
IMPORT Directory Table 0003A614 00000000 Time Date Stamp
IMPORT Name Table 00034618 00000000
IMPORT Hints/Mames & DLL Names 0003A61C 00000000
= SECTION .data 0003A620 00000000
DELAY IMPORT Address Table 00034624 00000000
- SECTION .rsrc 0003A625 00000000
0003A62C 00000000
0003A630 00000000
0003A634 00000000

Although the “RVA to Bound IAT” is filled in, this feature was reserved for
a future version of bind, but | don’ t think it ever got implemented 106
before deprecation so it just points at some nulls.

mspaint’ s delayed IAT

= mspaint.exe
IMAGE_DOS_HEADER
MS-DOS Stub Program
- IMAGE_NT_HEADERS
IMAGE_SECTION_HEADER .text
IMAGE_SECTION_HEADER .data
IMAGE_SECTION_HEADER .rsrc
= SECTION .text
IMPORT Address Table
IMAGE_DEBUG_DIRECTORY
DELAY IMPORT DLL Mames
IMAGE_LOAD_CONFIG_DIRECTORY
IMAGE_DEBUG_TYPE_CODEYIEWY
DELAY IMPORT Descriptors
DELAY IMPORT Mame Table
DELAY IMPORT Hints/Names
IMPORT Directory Table
IMPORT Name Table
IMPORT Hints/Mames & DLL
= SECTION .data
DELAY IMPORT Address Table
- SECTION .rsrc

RWA Data
DOD03EBC4 01035425
DOO3EBCS 01035400

O003EGCC A 01035418

Description
Virtual Address
Virtual Address
Virtual Address

Value

0000 DrawThemeBackground
0000 OpenThemeData

0000 CloseThemeData

0003E6DO 00000000 End of Imports UxTheme.dll

0003EB 010352B0 Virtual Address 0000 GdipSavelmageToStream
0003EROE 010352C5 Virtual Address 0000 GdipGetlmageRawF ormat
0003g6DC 010352DA Virtual Address 0000 GdipGetPropertySize
O0SEGED 010352EF Virtual Address 0000 GdipGetAllPropertyltems

03EGE4

01035304

D03EGES 01035319
O003EGEC 0103532E
0003E6FD 01035298
O003E6F4 01035358
0003E6F8 0103536D
O003E6BFC 01035382
0003E700 01035397
0003E704 010353AC
0003E708 010353C1
0003E70C 01035306
0003E710 010353EB
0003E714 01035266
O003E718 01035343
0003E71C 01035260
0003E720 00000000

Virtual Address
Virtual Address
Virtual Address
Virtual Address
Virtual Address
Virtual Address
Virtual Address
Virtual Address
Virtual Address
Virtual Address
Virtual Address
Virtual Address
Virtual Address
Virtual Address
Virtual Address
End of Imports

0000 GdipCreateBitmapFromFile
0000 GdipCreateBitmapFromFilelCh
0000 GdipGetlmageDecodersSize
0000 GdipDisposelmage

0000 GdipGetlmageEncodersSize
0000 GdipGetlmageEncoders

0000 GdipFree

0000 GdipAlloc

0000 GdipClonelmage

0000 GdipSavelmageToFile

0000 GdipSetPropertyltem

0000 GdipCreateBitmapFromHBITMAP
0000 GdiplusStartup

0000 GdipGetlmageDecoders

0000 GdiplusShutdown

gdiplus.dll

These are virtual addresses. Since the ImageBase for mspaint is 0x1000000 and the
SizeOflmage is 0x57000, that means these virtual addresses start out inside 107
mspaint itself. Each one just points at some stub code to call the dynamic linker.

mspaint’ s delayed imports in
memory (some resolved, some not)

Resolved Not Resolved

%1 pid 2360 - WinDbg:6.10.11003.233 X86

File Edit View Debug
ﬁ it J:_l

0103ebcd Sad?2bef S5ad773b8 [RRUEETIN=R00000000 010352b0 010352cS 010352da 010352ef 01035304
0103ebesd 01035319 0103532e 0103529b 01035358 0103536d 01035382 01035397 010353ac 010353cl
0103e70c 010353d6 010353eb 4ect7a79 01035343 01035260 00000000 00000000 O000OOOOO OOOOOOOO

mand 1>-WE3] o) '
e et e Y e e i B e e e e e e e e ' —— o e Bt e T L L T kL T e

*RRX LUK DVMDOL I ~

J,

w

< 01035419 ffel Eax
— — 0103541b b8ccetl301 mowv eax,of fset mspaint+0x3ebee (0103eboc
|01005>| 0103%20 e9eCffffff Jmp mspaint+0x3540a (0103540a)
\ Ln0, ColD Sys0:<local> Proc 000:938 Thrd 005:528 -1 R| CAPS| NUM
Start of stub code 08

Note to self, walk the stub code a bit in the debugger

Dependency Walker, just ‘cause

hehe depends.exe...that’ s right, potty humor, | went there

- Dependency Walker - [notepad.exe]

Bp File Edit View Options Profile ‘Window Help
= R S T N G] =EO N
- B NOTEPAD.EXE || PI Ordinal ~ Hint Function Entry Point
- [combpLG3z.DLL B3 [na 49 {0x0031) | CloseHandle 0x7C309BD7
8| ADVAPI3Z2.DLL B3 |nja 76 (0x004C) | CreateEventw 0x7C80A739
| COMCTL32.DLL B0 |nja 82 (0x0052) | CreateFilew 0x7C8107F0
5| GDI3Z.DLL €3 |nia 108 {(0x006C) | CreateThread 0x7C8106C7
SRS T K ERMELS2.DLL ED |mja 125 {0x007D) | DelayLoadFailureHook 0x7C87EECD
x| MTDLL.DLL €3 |mja 127 (0x007F) | DeleteCriticalSection 0x7C91135A
©] WTDLL.DLL B3 |nja 130 (0x0082) | DeleteFilew 0x7C831F4B
X ISable I nreadLibraryCalls X
%] SHELL32.DLL €3 |nia 137 (0x0089) | DisableThreadLibraryCall 0x7C811326
3 SHLWAPi DLL €3 (mja 150 {(0x0096) | EnterCriticalSection 0x7C901000
% ADV.'APISZ DiL A [nia 12A MyNNRAY | FynandFnviranmentSkrinneid! N¥7ra3NGFA
5 .
%] GDI32.DLL E Ordinal ~ Hint Function Entry Point
. %] KERNEL32.DLL €3 1(0x0001)| 0(0x0000) | ActivateActCtx 0x0000AGE4
2% NTOLL.OLL (] 2(0x0002) | 1 (0x0001) | Addatoma 0x0003551D
%] MSVCRT DLL' €3 3{0x0003) | 2(0x0002) | Addatomi 0x000326F1
3] ' €3 4(0x0004) | 3 (0x0003) | AddConsolealiasa 0x0007 1 DFF
3" LOER32.PLL €3 5{0x0005) | 4 (0x0004) | AddConsoledliasw 0x00071DC1
.) X X QCal ernateCompuceriame X
23] OLE32.DLL B3 | 6(0x0006) | 5(0x0005) | AddlocalalternateComputerilamed | 0x00059412
58] APPHELP.DLL (= 7 (0x0007)| 6(0x0006) | AddLocalalternateComputerhamei 0x000592F6
=371 MLANG.DLL Y |ED | s{oxo008)| 7(0x0007) | AddRefactClx 0x0002BF11
< €EJ%| 9(0x0009)| 8 (0x0008) | AddvectoredExceptionHandler NTOLL.RtladdvectoredExceptionHandler
Delay load F
rwarded-to DLL :
orwarded-to Forwarded-to Function

109

Runtime Importing

Just for completeness, | should mention LoadLibrary() and
GetProcAddress().

LoadLibrary() can be called to dynamically load a DLL into
the memory space of the process

GetProcAddress() gives the address of a function
specified by name, or by ordinal (which we will talk about
soon). This address can then be used as a function
pointer.

Remember when we were seeing delay-loaded DLLs, and
the dynamic linker "somehow" loaded the DLL and then
resolved the function address? It's actually using
LoadLibrary() and GetProcAddress().

These functions are often abused to make it so that which
functions the malware actually uses cannot be determined
simply by looking at the INT. Rather, the malware will

have the names of the imported libraries and functions
obfuscated somewhere in the data, and then will
deobfuscate them and dynamically resolve them before
calling the imported functions. 110

Uhg, finally done with imports. Treat yourself to some fail.

8mazonoom | EEERTeee |

Dafe’s Amazon.com ! Today's Deals Gifts & Wish Lists G Cards

Toys & Games Mo ey & >

Anakin Skywalker Life Size Cutout 73in

by Ladiody Cord and Pacty Ot

0: $20.04 (40%)
In stock.
Shos foom and scid by CSK Stores

1 new from 524659

=4t e gt Coalrnes

) It lcaer crage y 9
100 It s B, At o St Wil shee

ban i © et et € 2o s w0 e b nsn [l p e et

A o e e R e e

b s W ey

.................

Alalhe

~

o cutormee reviesas yol. Ba the Tt
Prce: $29.95

Processng takes an s4000ne 4 10 § days for orders from ths selier

Are You Looking lor Great Halloween Costum
; Our Halloween Siacg Rae ¢ spock-taduler selacton of kds &

Register now and save! (optional)

Save your travel tineraries, preferences and billing information in our secure profile

What is your favome movne’?

W Whatis the name of your favonte cartoon character?

O1 Who is your favorite fictional character?
Where did you go on your first date?

*I' What s your favonte pet's name?

N What is your best fiend’s last name?

Choose a sign.in question that only you can answer:

EAIL

bl 10 match your offer

fd you provide to us. Please n
oom” your request can not be

refNUS are ot anowey

« Iif we can't accept your offer, your credit card will not be

charged

Exporting Functions & Data

For a library to be useful, other code which wants to use
its functions must be able to import them, as already
talked about.

There are two options to export functions and data. They
can be exported by name (where the programmer even
has the option to call the exported name something
different than he himself calls it), or they can be exported
by ordinal.

An ordinal is just an index, and if a function is exported by
ordinal, it can only be imported by ordinal. While exporting
by ordinal saves space, by not having extra strings for the
names of symbols, and time by not having to search the
strings, it also puts more work on the programmer which
wants to import the export. But it can also be a way to
make a private (undocumented) APl more private.

112

S ® et

TFRAINNRANYT

axNe
222

name_ordinal[0]
name_ordinal[1]
name_ordinal[2]

name_ordinal[NumberOfNames

struct _IMAGE_EXPORT_DIRECTORY {
0x00 DWORD Characteristics;
0x04 DWORD TimeDateStamp;
0x08 WORD MajorVersion;
0x0a WORD MinorVersion;
0x0c DWORD Name;
I0x1o DWORD Base;
0x14 DWORD NumberOfFunctions;
0x18 DWORD NumberOfNames;
0Ox1ic DWORD AddressOfFunctions;
0x20 DWORD AddressOfNames;
0x24 DWORD AddressOfNameOrdinals;
7

(Array of WORDs)

ifa I N is exported by ordinal and name then:
Its name d at AddressOfNames[N]
mmmmmmmmmm

Pointers to strings
address_of_name[0]

address_of_name[1]
address_of_name[2]

address_of _name[NumberOfNames

TELEREEE

Indexed by Ordinals
address_of_function[0]

address_of_function[1]
address_of_function[2]

address_of_function[NumberOfFunctions)

_'___.‘ ~edes S
—— alal~TIH .
— Code/Data '

If a symbol N is exported by ordinal and name then:
-Its name will be located at AddressOfNames[N]
-Its ordinal at AddressOfNameOrdinals[N]

-And its address® will be

AddressOfFunctions[AddressOfNameOrdinals[N]]

The function might be forwarded, in that case the last
pointer will refer to an address within the exports
pointing to the forwarder string, which will contain
information on the symbol and the module where to
find it.

| Portable Executable Format |

—l) SO mEred v@a puwe
—

Lot vocheted or Mo Cec 38 20040

SuOue Jored T Ty e pawt

Image by Ero Carrera

Exports

from winnt.h

typedef struct IMAGE EXPORT DIRECTORY {

DWORD
DWORD
WORD

WORD

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

} IMAGE EXPORT DIRECTORY,

Characteristics;
TimeDateStamp;
MajorVersion;
MinorVersion;
Name;

Base;
NumberOfFunctions;

NumberOfNames;

AddressOfFunctions; // RVA from base of image

AddressOfNames;

// RVA from base of image

AddressOfNameOrdinals; // RVA from base of image

*PIMAGE EXPORT DIRECTORY;

114

Exports 2

 The TimeDateStamp listed here is what's actually
checked against when the loader is trying to
determine if bound imports are out of date for
instance. Can be different from the one in the File
Header (see ntdll.dll). Presumably (wasn’t able to
confirm), the linker only updates this if there are
meaningful changes to the RVAs or order for
exported functions. That way, the TimeDateStamp
“version” can stay backwards compatible as long
as possible.

* NumberOfFunctions could theoretically be
different from NumberOfNames, but in practice
they should be the same. By knowing the number
of names, when searching for an import by name,
the loader can do a binary search.

115

Exports 3

« Base is the number to subtract from an ordinal to
get the zero-indexed offset into the
AddressOfFunctions array. Because ordinals start
at 1 by default, this is usually 1. However ordinals
could start at 10 if the programmer wants them to,
and therefore Base would then be set to 10.

- AddressOfFunctions is an RVA which points to the
beginning of an array which holds DWORD RVAs
which point to the start of the exported functions.
The pointed-to array should be
NumberOfFunctions entries long. This would be the
Export Address Table (EAT) like the flip side of the
Import Address Table (IAT).

- Eat!l ate! :P

116

Exports 4

* AddressOfNames is an RVA which points to
the beginning of an array which holds DWORD
RVAs which point to the strings which specify
function names. The pointed-to array should be
NumberOfNames entries long. This would be
the Export Names Table (ENT) like the flipside
of the Import Names Table (INT).

* AddressOfNameOrdinals is an RVA which
points to the beginning of an array which holds
WORD (16 bit) sized ordinals. The entries in
this array are already zero-indexed indices into
the EAT, and therefore are unaffected by Base.

117

Ordinal says what?

When importing by name, like | said, it can do a binary search
over the strings in the ENT because nowadays, they' re
lexically sorted. “Back in the day” they weren "t sorted. Back
then, it was strongly encouraged to “import by ordlnal , that is,
you could specify “| want ordinal 5 in kernel32 dil” instead of “I
want AddConsoleAliasW in kernel32.dIl”, because if the names
aren’ t sorted, you’ re doing a linear search. You can still import
by ordinal if you choose, and that way your binary/library will
load a bit faster.

Even if you’ re importing by name, it is actually just finding the
index in the ENT, and then selecting the same index in the
AddressOfNameOrdinals, and then reading the value from the
AddressOfNameOrdinals to use as an index into the EAT.

Generally speaking, the downside of importing by ordinal is that
if the ordinals change, your app breaks. That said, the developer
who’ s exporting by ordinal has incentive to not change them,
unless he wants those apps to break (e.g. to force a deprecated
API to not be used any more).

118

IMAGE EXPORT DIRECTORY
Characteristics Tal k th e Wal k

TimeDateStamp (search for import EditOwnerInfo by name
MajorVersion and then by ordinal)
MinorVersion

NEWTE ——> ACLEDITIl
Base

NumberOfFunctions . _
Modified graphical style borrowed from

NumberOfNames Matt Pietrek articles
AddressOfFunctions

AddressOfNames

AddressOfNameOrdinals

0x0000323A 0x00004010 0x00003248 0x00004BC6 0x00004ED6 0x0000590A E AT

0x0003 0x0000 0x0001 0x0002 0x0005 0x0006 NameOrdinaIs

0x00013913 0x000138E4 0x000138F2 0x00013900 0x0001391B 0x0001392C E N T

DLLMain EditAuditinfo EditOwnerinfo EditPermissioninfo FMExtensionProcW SedDiscretionaryActEditor

(note the lexical order, note to self, talk about lexical ordering necessitating the ordinal table)

How does one go about specifying
an export?

 http://msdn.microsoft.com/en-us/library/
hyx1zcd3(VS.80).aspx

« “There are three methods for exporting
a definition, listed in recommended
order of use:

— The _ declspec(dllexport) keyword in the
source code

— An EXPORTS statement in a .def file

— An /[EXPORT specification in a LINK
command”

120

Where to specify a .def file

#- Common Properties
=) Configuration Properties
General
Debugging

+- CJC++

=) Linker
General
Input
Manifest File
Debugaing
System
Optimization
Embedded IDL
Advanced
Command Line

- Manifest Tool

[+ XML Document Generator

- Browse Information

(/- Build Events

[+ Custom Build Step

Additional Dependencies

Ignore All Default Libraries Mo
Ignore Specific Library

Add Module to Assembly

Embed Managed Resource File

Force Symbol References

Delay Loaded DLLs

Assembly Link Resource

Module Definition File
Use specified module definition File during executable creation.

{/DEF:name)

121

Forwarded Exports

* There is an option to forward a function from
one module to be handled by another one (e.qg.
it might be used if code was refactored to move
a function to a different module, but you wanted
to maintain backward compatibility.)

* As we just saw, normally AddressOfFunctions
points to an array of RVAs which point at code.
However, if a RVA in that array of RVAs points
into the exports section (as defined by the base
and size given in the data directory entry), then
the RVA will actually be pointing at a string of
the form DIIToForwardTo.FunctionName

122

Kernel32.dll forwarded (to ntdll.dll) exports

= kemel32.dll RWVA Data Description Yalue
IMAGE_DOS_HEADER 00002654 O0DDAGE4 Function RVA 0001 ActivateActCtix
MS-DOS Stub Program 00002658 00035510 Function RVA 0002 AddAtomA
- IMAGE_NT_HEADERS 0000265C 000326F1 Function RVA 0003 AddAtomw
IMAGE_SECTION_HEADER .text 00002660 00071DFF Function RVA 0004 AddConsoleAliasA
IMAGE_SECTION_HEADER .data 00002664 00071DC1 Function RVA 0005 AddConsoleAliasWW
IMAGE_SECTION_HEADER .rsrc 00002665 00059412 Function RVA 0006 AddLocalAlternateComputerNameA
IMAGE_SECTION_HEADER .reloc 0000266C 000592F6 Function RVA 0007 AddLocalAlternateComputerNameWy
= SECTION text 00002670 0002BF11 Function RVA 0008 AddRefActCtx
IMPORT Address Table 0000267 4 00009011 Forwarded Name RVA 0009 AddvectoredExceptionHandler -> NTDLL. RtlAddVectoredExceptionHandler
IMAGE_EXPORT_DIRECTORY 00002678 00072451 Function RVA 000A AllocConsole
0000267C 0005FBD4 Function RVA 000B AllocateUserPhysicalPages
EXPORT Name Pointer Table 00002680 0003597F Function RVA 000C AreFileApisANSI
EXPORT Ordinal Table 00002654 0002E45A Function RVA 000D AssignProcessToJobObject
= kernel32.dll RWA Raw Data Yalue
IMAGE_DOS_HEADER 00O0BFS8 00 BC 73 74 72 636D 70 00BC 7374 72636D70 .Istremp. Istrecmp
MS-DOS Stub Program 00O0BF98 41 00 BC 73 74 72 636D 70 57 00 BC 73 74 72 63 A. lstrcecmpW. Istrc
#- IMAGE_NT_HEADERS 0000BFAS BD 70 B9 00 BC 73 74 72 B3 6D 70 69 41 00 6C 73 mpi. lstrecmpiA. Is
IMAGE_SECTION_HEADER .text 0000BFBE 74 72 B3 BD 70 69 57 00 BC 73 74 72 63 70 79 00 trcmpiW. Istrcpy.
IMAGE_SECTION_HEADER .data 0OODBFCE BC 73 74 72637079 41 00BC 737472637079 IstrcpyA. Istrcpy
IMAGE_SECTION_HEADER .rsrc 0O0DSFDE 57 00 BC 73 74 72 B3 70 79 BE 00 BC 73 74 72 B3 W. Istrcpyn. Istrc
IMAGE_SECTION_HEADER .reloc OOOOBFES 70 79 BE 41 00 6C 73 74 72 B3 70 79 BE 57 00 BC pynA. Istrcpyn. |
=- SECTION .text O000BFFE 73 74 72 BC B5 BE 00 BC 73 74 72 BC B5 BE 41 00 strlen. IstrlenA.
IMPORT Address Table 00009008 BC 73 74 72 6BC 65 BE 57 00 4E 54 44 4C 4C 2E 52 Istrlenw. NTDLL.R
IMAGE_EXPORT_DIRECTORY 0000018 74 BC 41 B4 B4 56 65 B3 74 BF 72 65 B4 45 78 63 t |[AddVectoredExc
EXPORT Address Table 0000S028 B5 70 74 B9 BF BE 453 b1 BE 64 6C 65 72 00 4E 54 eptionHandler NT
EXPORT Name Pointer Table 00009038 44 AC 4C 2E 52 74 6C 44 65 63 6F 64 65 50 6F 69 DLL.Rt IDecodePaoi
EXPORT Ordinal Table 00009048 BE 74 65 72 00 4E 54 44 AC 4C 2E 52 74 6C 44 65 nter NTDLL.Rt IDe
00009058 63 6F 64 65 53 79 73 74 65 6D 50 6F 69 6E 74 65 codeSystemPointe

123

How does one go about forwarding
exports?

o Statement in .def file of the form
EXPORTS
FunctionAlias=0therDLLName.RealFunction

 or /export linker option
« /export:FunctionAlias=0OtherDLLName.RealFunction

« Can even specify a linker comment in
the code with

« #pragma comment(linker, "/export:FunctionAlias=0OtherDLLName.RealFunction")

124

Relevance to Stuxnet

« Stuxnet used forwarded exports for the
93 of 109 exports in s7otbxdx.dll which
it didn’ t need to intercept.

Figure 18

Step7 and PCL communicating via s7otbxdx.dl|
Step/
“—— s/otbxdx.dll PLC
code block .
fromPLC 1s7blk _read

llllllllll

STL
Show code
B :')r'ir-
block from lock
) « block -~
PlCtouser. | | Stessssss=s .
STL
code
b|OCL‘

125

From http://www.symantec.com/content/en/us/enterprise/media/security _response/whitepapers/w32_stuxnet_dossier.pdf

Stuxnet trojaned DLL

Figure 19
Communication with malicious version of s7otbxdx.dll
Step7
Request s/otbxdx dll PLC
codeblock Tblk d — ——
f pLC S _rea--..r.
rom —> s STL :
srrssamees * code |
Show code . cz:iLe 8 DK
block from . block <
PLC to user. DLk
: Modified !
: STLcode . s7otbxsx.dll
s block .

s/blk_read

126

From http://www.symantec.com/content/en/us/enterprise/media/security response/whitepapers/w32_stuxnet_dossier.pdf

Function Redirection Tutorial

* http://packetstormsecurity.org/papers/
win/intercept_apis_dll_redirection.pdf

» Basically talks about making a trojan
DLL which hooks or reimplements some
functions for the intercepted DLL, and
then forwards the rest on to the original.
Basically exactly what Stuxnet did for
the trojan PLC accessing DLL.

127

Returning to Bound Imports

« Just to fill this in, now that we know about forwarded functions, the point of
NumberOfModuleForwarderRefs and
IMAGE_BOUND_ FORWARDER _REF is that when the linker is trying to
validate that none of the bound imports are changed, it needs to make sure
none of the versions (TimeDateStamps) of imported modules has changed.
Therefore if a module is bound to any modules which forward to other
modules, those forwarded-to modules must be checked as well

typedef struct IMAGE_BOUND_ IMPORT_DESCRIPTOR {
DWORD TimeDateStamp;
WORD OffsetModuleName;
WORD NumberOfModuleForwarderRefs;
/I Array of zero or more IMAGE_BOUND_FORWARDER_REF follows
} IMAGE_BOUND_ IMPORT_DESCRIPTOR, *PIMAGE_BOUND_IMPORT_DESCRIPTOR;

typedef struct IMAGE_BOUND_ FORWARDER REF {
DWORD TimeDateStamp;
WORD OffsetModuleName;
WORD Reserved;
} IMAGE_BOUND_ FORWARDER_REF, *PIMAGE_BOUND FORWARDER REF;

128

WHILE we’ re thinking back...

* What are the three types of imports?

 What is the difference between
importing by name vs. ordinal?

* Binding vs. ASLR: There can
be only one? =
« What did the life-size cut out of g@=*"
Anakin Skywalker look like? 3

EAT Hooking

* IAT hooking can modify all currently loaded
modules in a process’ address space. If
something new gets loaded (say, through
LoadLibrary()), the attacker would need to be
notified of this even to hook it’ s IAT too.

* |nstead, if the attacker modifies the EAT in the
module which contains the the functions which
he is intercepting, when a new module is
loaded, he can just let the loaded do its thing,
and the new module will point at the attacker’ s
code. Thus EAT hooking provides some

“forward compatibility” assurance to the
attacker that he will continue to hook the
functions for all subsequently loaded modules.

130

EAT Hooking Lab

* beta: http://www.codeproject.com/KB/
system/api_spying hack.aspx

131


~~~~~ -

- .

ey -

ey

o -
eve

- -
-

At e

2 E.E=

. - ——c® e
N CWCAO  Asmemharn samrn e
# 6 0  § a2ant e S 4 e
" o v b b &
—— -
e ——
T T —
e — 3 e o ~
e aaa st T W - - be ——
D . - — . - %0 A g 3 e e e e
v St e o v prgepiarafey ~ oo
e swce ——es v serer arag = he hwee @y e @ mmar
e [ » @ e - e T W e W St
tote Two by e
o o e feraate AT e ar) || STy S——
AT T A -
e b e
W 4 A
w TN, -

—| struct _IMAGE_DEBUG_DIRECTORY {
-~ 0x00 DWORD Characteristics;
-~ | 0x04 DWORD TimeDateStamp;
———| 0x08 WORD MajorVersion;
= | 0x0a WORD MinorVersion;
== 0x0c DWORD Type;

] 0x10 DWORD SizeOfData;
== -1 0x14 DWORD AddressOfRawData;
5 S DWORD PointerToRawData;

:E'X‘ {5‘“ ( Portable Executable Format |

Image by Ero Carrera



typedef struct IMAGE DEBUG DIRECTORY ({
DWORD Characteristics;
DWORD TimeDateStamp;
WORD MajorVersion;
WORD MinorVersion;
DWORD Type;
DWORD SizeOfData;
DWORD AddressOfRawData;
DWORD PointerToRawData;

Debug Info

} IMAGE DEBUG DIRECTORY, *PIMAGE DEBUG DIRECTORY;

#define IMAGE DEBUG TYPE UNKNOWN
#define IMAGE DEBUG TYPE COFF
#define IMAGE DEBUG TYPE CODEVIEW
#define IMAGE DEBUG TYPE FPO

#define IMAGE DEBUG TYPE MISC
#define IMAGE DEBUG TYPE EXCEPTION
#define IMAGE DEBUG TYPE FIXUP
#define IMAGE DEBUG TYPE OMAP TO SRC
#define IMAGE DEBUG TYPE OMAP FROM SRC
#define IMAGE DEBUG TYPE BORLAND
#define IMAGE DEBUG TYPE RESERVEDI10
#define IMAGE DEBUG TYPE CLSID

from winnt.h

0

1

2

3

4

5

6

7

8

9

10 133
11



Debug Info 2

TimeDateStamp, yet another to sanity check
against. Should be the same as the one in the
File Header | believe.

Type and SizeOfData are what you would
expect. The main Type we care about is
IMAGE _DEBUG_TYPE CODEVIEW as this is
the common form now which points to a
structure which holds a path to the pdb file
which holds the debug symbols.

AddressOfRawData is an RVA to the debug
info.

_P?interToRawData is a file offset to the debug
info.

134



Debug Info 3

From http://www.debuginfo.com/examples/src/DebugDir.cpp

#define CV_SIGNATURE NBI1O '"01BN’
#define CV_SIGNATURE_RSDS 'SDSR’
// CodeView header

struct CV_HEADER {

DWORD CvSignature; // NBxx

LONG Offset; // Always 0 for NB1O
}i Oh yay!
// CodeView NB10 debug information Another TimeDateStamp!

// (used when debug information is stored in a PDB 2.00 file)
struct CV_INFO PDB20 {
CV_HEADER Header;

DWORD Signature; // seconds since 01.01.1970

DWORD Age; // an always-incrementing value

BYTE PdbFileName[1l]; // zero terminated string with the name of the PDB file
}i

// CodeView RSDS debug information
// (used when debug information is stored in a PDB 7.00 file)
struct CV_INFO PDB70 {

DWORD CvSignature;

GUID Signature; // unique identifier

DWORD Age; // an always-incrementing value

BYTE PdbFileName[1l]; // zero terminated string with the name of the PDB file
}i

135



Therefore, how shall we interpret this?

RWA Data Description Value
00001670 00000000  Characteristics
0000167 4 3B7085A0 Time Date Stamp 200108417 Fri 20:59:25 UTC
00001678 0000 Major Version
0000167 A 0000 Minor Yersion
0000167 C 00000002  Type IMAGE_DEBUG_TYPE_CODEVIEW
00001680 0000001C  Size of Data
00001654 00002524  Address of Raw Data
00001688 00001924  Pointer to Raw Data
Header. Header.
CvSignature Offset
A A
[ Y \
CV_HEADER Header Signature Age
( A | Y A \
RWA, Raw Data Value
00002524 4E 42 31 30 00 0D 0D 0O AD 85 7D 3B 01 00 00 OO NB1O. .. ... boo..
00002534 \61 63 BC 65 64 B9 74 2E 70 B4 B2 DD} acledit. pdb.
Y
PdbFileName
\ J 136

CV_INFO_PDB20



A thing of the past?

Between pulling a pdb path from high profile
malware like GhostNet, Aurora, and Stuxnet
malware, and Greg Hoglund starting to talk (at
BlackHat LV 2010) about using pdb paths and
TimeDateStamps to provide better attribution
for malware authors, are we going to see any
meaningful values here anymore? Time will tell.

e:\ghOst\server\sys\i386\RESSDT.pdb
\Aurora_Src\AuroraVNC\Avc\Release\AVC.pdb
b:\myrtus\src\objfre w2k x86\i386\guava.pdb

137



T

2RR2RRAE

11

¥
v

17

LT3
e

struct _IMAGE_DATA_DIRECTORY {

0x00 DWORD VirtualAddress;

| Portable Executable Format |

. waa e

~
-~

— SuCue pored Ty Te puwe

Lot \oceed or Mon Cec 38 2000

Image by Ero Carrera



Relocations

from winnt.h

» Generally stored in the .reloc section

* Not shown on the picture the
IMAGE DIRECTORY_ENTRY_ BASERELOC
points at an array of

IMAGE_BASE_RELOCATION structures.

typedef struct IMAGE BASE RELOCATION {
DWORD VirtualAddress;
DWORD SizeOfBlock;

// WORD TypeOffset[1];

} IMAGE BASE RELOCATION;
139



Relocations 2

* VirtualAddress specifies the page-aligned
virtual address that the specified relocation
targets will be relative to.

» SizeOfBlock is the size of the
IMAGE BASE_RELOCATION itself + all
of the subsequent relocation targets.

» Following SizeOfBlock are a variable
number of WORD-sized relocation targets.
The number of targets can be calculated

dS (SizeOfBlock — sizeof(IMAGE BASE RELOCATION))/ sizeof(WORD).
140



= acledit.dll

23]

3]

+

IMAGE_DOS_HEADER

MS-DOS Stub Program

IMAGE_NT_HEADERS

IMAGE_SECTION_HEADER .text

IMAGE_SECTION_HEADER .data

IMAGE_SECTION_HEADER .rsrc

IMAGE_SECTION_HEADER .reloc

BOUND IMPORT Directory Table

BOUND IMPORT DLL Names

SECTION .text

SECTION .data

SECTION .rsrc

SECTION .reloc
IMAGE_BASE_RELOCATION

Relocations example acledit.dll

~

RWA Data Description Value
0002168C 3DEB Type RVA 00002DEB IMAGE_REL_BASED_HIGHLOWY
0002168E 3F2B Type RVA 00002F2B IMAGE_REL BASED HIGHLOW
00021690 00003000  RWA of Block
00021694 0000003C  Size of Block
00021698 32FB Type RVA 000032FB IMAGE_REL_BASED_HIGHLOW
0002169A 3307 Type RVA 00003307 IMAGE_REL_BASED_HIGHLOW
0002169C 334A Type RVA 0000334A IMAGE_REL_BASED_HIGHLOWY
0002169E 33A2 Type RVA 000033A2 IMAGE_REL_BASED_HIGHLOWY
000216A0 330B Type RVA 000033DB IMAGE_REL_BASED_HIGHLOW
000216A2 341 Type RVA 00003411 IMAGE_REL_BASED_HIGHLOW
00021644 B Type RVA 0000341B IMAGE_REL_BASED_HIGHLOWY
000216A6 3454 Type RVA 00003454 IMAGE_REL_BASED_HIGHLOWY
000216A8 3473 Type RVA 00003473 IMAGE_REL_BASED_HIGHLOW
000216AA 34B3 Type RVA 00003463 IMAGE_REL_BASED_HIGHLOWY
000216AC 3403 Type RVA 000034D3 IMAGE_REL_BASED_HIGHLOWY
000216AE J4E2 Type RVA 000034E2 IMAGE_REL_BASED_HIGHLOWY
000216B0 J4FC Type RVA 000034FC IMAGE_REL_BASED_HIGHLOW
00021662 3517 Type RVA 00003517 IMAGE_REL_BASED_HIGHLOW
00021664 I51E Type RVA 0000351E IMAGE_REL_BASED_HIGHLOW
000216B6 3749 Type RVA 00003749 IMAGE_REL_BASED_HIGHLOW
00021668 3775 Type RVA 00003775 IMAGE_REL_BASED_HIGHLOW
000216BA 3B13 Type RVA 00003813 IMAGE_REL_BASED_HIGHLOWY
000216BC 3JCF8 Type RVA 00003CF8 IMAGE_REL_BASED_HIGHLOW
000216BE 3012 Type RVA 00003D12 IMAGE_REL_BASED_HIGHLOWY
000216C0 3082 Type RVA 00003082 IMAGE_REL_BASED_HIGHLOWY
000216C2 3DFB Type RVA 00003DFB IMAGE_REL_BASED_HIGHLOW
000216C4 3E15 Type RVA 00003E15 IMAGE_REL_BASED_HIGHLOWY
000216C6 3E35 Type RVA 00003E35 IMAGE_REL_BASED_HIGHLOWY
000216C8 3E3F Type RVA 00003E3F IMAGE_REL_BASED_HIGHLOW
000216CA 0000 Type RVA
000216CC 00004000  RWA of Block
00021600 0000002C  Size of Block
00021604 3256

<

Type RVA

00004256 IMAGE_REL_BASED_HIGHLOW

\ >

v

141



Relocations 3

« The upper 4 bits of the 16 bit relocation target
specifies the type. The lower 12 bits specifies
an offset, which will be used differently
dependlng on the type. Types are:

#defi IMAGE REL_ BASED ABSOLUTE

#de fi IMAGE_REL BASED HIGH

#de fine IMAGE_REL BASED_LOW

#define IMAGE_REL_ BASED_HIGHLOW
#define IMAGE REL_BASED_HIGHADJ
#define IMAGE REL BASED MIPS JMPADDR

O Ul WNE—E o

#define IMAGE REL BASED MIPS JMPADDR16
#define IMAGE REL BASED IA64 IMM64 9
#define IMAGE REL BASED DIR64 10

. We generally only care about
IMAGE_REL BASED HIGHLOW, which when
used says that the RVA for the data to be
relocated is specified by VirtualAddress + the

lower 12 bits.

142



Slice of life

00021690 00003000  RWA of Block
00021694 0000003C  Size of Block

00021698 32FB  Type RVA 000032FE IMAGE_REL_BASED_HIGHLOW
00021694 3307 Type RVA 00003307 IMAGE_REL_BASED_HIGHLOW
0002169C 334A  Type RVA 00003344 IMAGE_REL_BASED_HIGHLOW

« So in the above if the file was being relocated,
the loader would take the relocation target
WORD 0x32FB, the upper 4 bits are 0x3 =
IMAGE_REL BASED HIGHLOW. The lower
12 bits are 0x2FB. Given the type, we do
(VirtualAddress (0x3000) + lower 12 bits
(0x2FB)) == 0x32FB is the RVA of the location
which needs to be fixed.

 Then the loaded would just add whatever the
delta is between the file’ s preferred load
address and actual load address, and just add
that delta to data at RVA 0x32FB.

* (Show example in WIinDBG of what target for
relocation can look like) 143



Memory Integrity Checking

« Let s say you want to make a memory integrity checker to look
for inline hooks in running code. You know at this point that
certain sections such as .text are marked as non-writable.
Therefore you would think what is on disk should be the same
as what’ s in memory. So to check for changes in memory, you
should be able to hash the .text in memory, hash the .text read
in from disk, and compare the hashes, right?

« Maybe. If the file isn’ t relocated when it’ s loaded into memory,
yes that would work®. If the file is relocated when loaded, the
application of the relocation fixups will change the bytes vs.
what is on disk, and therefore change the hash. You can still
compare hashes though if you now take the data read in from
disk and apply relocations to it in the same way the loaded
would have based on the delta between the preferred load
address and the actual load address.

* *There are caveats such as the fact that things like the IAT can
exist in “non-writable” memory, but it still gets written at load
time, and thus differs from disk. That needs to be compensated
for too.

144



Threads

In modern OSes, processes generally have separate
address spaces (as we talked about in the IAT/EAT
hooking sections). Threads are distinct units of execution
flow & context which are usually managed by the kernel,
but which coexist within a single process address space.
Therefore each thread can see the same global variables
for instance, but care must be taken (mutual exclusion) to
ensure they don’ t incur race conditions where two threads
access and modify some variable in a way which alters
the other’ s execution by screwing up its expectations.

Therefore it is desirable sometimes to have variables
(besides local (stack) variables) which are accessible only
to a single thread. Thread Local Storage (TLS) is a
mechanism which MS has provided in the PE spec to
support this goal. They support both regular data as well
as callback functions, which can initialize/destroy data on
thread creation/destruction.

145



- &
-

At e

2 EE=EC
x W - —_—

" -
"
N
P~
W . ' e -ty
TN OO - s PAADE_SRECTONY BN BOUND IO
S RORD @ s BT WORT Chamie W -
O . — W A e L S
T TWORD e » SIC
oo v [ » 0 -
Tods DwOm -
e rae na_ (e rethare
-
- VAT N7 A
e e e
e s 4 b rmmaan [ —— -
e P Al T L —— VAT DRI T e e MO e Cwo .~
e . tan
N AT o (e p— Voo

- ox00

|2 -| 0x08
=1 0x0c
S

DWORD
DWORD

struct _IMAGE_TLS_DIRECTORY {
StartAddressOfRawData;

EndAddressOfRawData;

LPDWORD AddressOfindex;

PIMAGE_TLS_ CALLBACK *AddressOfCallBacks;

DWORD
DWORD

v
b

v o
- .

SizeOfZerofFill;
Characteristics;

Image by Ero Carrera



Thread Local Storage

from winnt.h

typedef struct IMAGE TLS DIRECTORY32 {

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

StartAddressOfRawData;
EndAddressOfRawData;
AddressOfIndex;
AddressOfCallBacks;
SizeOfZeroFill;

Characteristics;

} IMAGE TLS DIRECTORY32Z;

147



Thread Local Storage 2

StartAddressOfRawData is the absolute
virtual address (not RVA, and therefore subject
to relocations) where the data starts.

EndAddressOfRawData is the absolute virtual
address (not RVA, and therefore subject to
relocations) where the data ends.

AddressOfCallbacks absolute virtual address

points to an array of
PIMAGE TLS CALLBACK function pointers.

SizeOfZeroFill is interesting just because it’ s
like a .bss zeroed blob tacked on after the TLS

data.
148



C\WINDOWS\system32\bootcfg.exe

(the only executable | could find that uses tls, thanks to a presumed bug in my property finder)

= bootcfy.exe
IMAGE_DOS_HEADER
MS-DOS Stub Program

+- IMAGE_NT_HEADERS
IMAGE_SECTION_HEADER .text
IMAGE_SECTION_HEADER .data
IMAGE_SECTION_HEADER .tls
IMAGE_SECTION_HEADER .rsrc
BOUND IMPORT Directory Table
BOUND IMPORT DLL Mames
SECTION .text

IMPORT Address Table

IMAGE _DEBUG_DIRECTORY

IMAGE_LOAD_CONFIG_DIRECTORY

IMAGE_DEBUG_TYPE_CODEVIEW

IMPORT Directory Table

IMPORT Name Table

IMPORT Hints/Names & DLL Names
SECTION .data
SECTION .tls
+ SECTION .rsrc

RWA
00001A20
00001A24
00001A25
00001A2C
00001A30
00001A34

Data
01012000
01012014
01011068
01011018
00000000
00000000

Description
Start Address of Raw Data
End Address of Raw Data
Address of Index
Address of Callbacks
Size of Zero Fill
Characteristics

Note that End Address — Start Address = 0x14. Go to .tls and look at the 149

likely file alignment padding resulting in a larger section.



How does one go about defining TLS?

 http://msdn.microsoft.com/en-us/library/
o6yh4a9k1(VS.80).aspx

 declspec( thread ) inttls i=1;

* More info http://msdn.microsoft. Com/en us/
library/ms686749(VS.85).aspx

* Note: No way listed to create callbacks.
For that we have to consult with unofficial
sources:

* http://www.nynaeve.net/?p=183

 http://hype-free.blogspot.com/2008/10/
playing-tricks-with-windows-pe-loader.html

150



Lab: TSL Callbacks

» Use lifak's example and Skywing's

151



More TLS Anti-Debug Tricks

/* TLS callback demonstration program.
This program may be used to learn/illustrate the TLS callback concept.
Copyright 2005 lifak Guilfanov <ig@hexblog.com>

There is no standard way (from compiler vendors) of creating it.
We use a special linker, UniLink, to create them.
Please contact Yury Haron <yjh@styx.cabel.net> for more information
about the linker.
*/

#include <windows.h>
#include <stdio.h>
#include "ulnfeat.h”
/* This is a TLS callback. It */ From http [lwww. heXblog .CO m/7p=9
void __stdcall callback(void * /*instance?*/,
DWORD reason,
void * /*reserved*/)

{
if (reason == DLL_PROCESS_ATTACH)
{
MessageBox(NULL, "Hello, world!", "Hidden message", MB_OK);
ExitProcess(0);
}
}

TLS_CALLBACK(c1, callback); // Unilink trick to declare callbacks
/* This is the main function.

It will never be executed since the callback will call ExitProcess().
*/
int main(void)
{

return O;

}

152



TLS misc

TLS callbacks can be executed when a process or thread
is started or stopped. (DLL_ PROCESS ATTACH,
DLL_PROCESS DETACH, DLL_ THREAD ATTACH
DLL_THREAD_DETACH), the thing being that desplte the
name, an exe is called with DLL PROCESS_ATTACH.

TLS data generally stored in the .tls section

Self-modifying TLS callbacks: https://www.openrce.org/
blog/view/1114/Self-modifying_ TLS callbacks

TlIs callbacks could also not just bypass a breakpoint, but
remove it too! :) More descriptions of possible actions

here: http://pferrie.tripod.com/papers/unpackers22.pdf

153



~~~~~

- Z
Seen b
- AT

P~
O .
TN DR -
i AORO & s —F -
. .
T TWORD e
MASE AT HEADN

e e e

e ' PP

B " AT Sp—r—

::)(;:' g R
2 E.E==
x_ et

[———r

BOND PO
i ST RRTTY -

"0 e treenes ten » 0 -
tody Twr -—e
e rae -‘--- - e
T

VAT eI Cser e SOt o OO ‘ow > o
ot WO . ban

e T Py
-
| [N t— x
I DWORC R eeCwa
8 ~ S
e >
28
i
v
mae

| struct _IMAGE_RESOURCE_DIRECTORY {
| ox00
== 0x04

DWORD
DWORD
WORD
WORD
WORD
WORD

Characteristics;
TimeDateStamp;
MajorVersion;
MinorVersion;
NumberOfNamedEntries;
NumberOfldEntries;

Image by Ero Carrera

Resources

from winnt.h

» Generally stored in the .rsrc section
typedef struct IMAGE RESOURCE DIRECTORY

{
DWORD

DWORD
WORD
WORD
WORD
WORD

Characteristics;
TimeDateStamp;
MajorVersion;
MinorVersion;
NumberOfNamedEntries;
NumberOfIdEntries;

} IMAGE RESOURCE DIRECTORY,

155

Resources 2

* Immediately following
IMAGE_RESOURCE_DIRECTORY is an

array of NumberOfNamedEntries +
NumberOfldEntries

IMAGE_ RESOURCE_DIRECTORY_ENTRY
structs (with the Named entries first, followed
by the ID entries.)

* A resource can be identified by a nhame
or an ID, but not both.

156

Resources 3: What the...

typedef struct IMAGE_RESOURCE_DIRECTORY_ENTRY {

union {
struct {
DWORD NameOffset:31;
DWORD NamelsString:1;
3
DWORD Name;

WORD Id;

I3

union {
DWORD OffsetToData;
struct {

DWORD OffsetToDirectory:31;
DWORD DatalsDirectory:1;
I3
I3
} IMAGE_RESOURCE_DIRECTORY_ENTRY;

157

Resources 4

It" s actually simpler than it looks. If the first DIWORD’ s
MSB is set (and therefore it starts with 8), that means the
lower 31 bits are an offset to a string which is the name of
the resource (and is specified like a wide character pascal
string...that is, instead of being null terminated, it starts
with a length which specifies the number of characters
which follow...haven' t been able to find what the actual
type is).

If the MSB is not set, it’ s treated as a WORD sized ID.

If the MSB of the second DWORD is set, that means the
lower 31 bits are an offset to another
IMAGE_RESOURCE_DIRECTORY.

If the MSB is not set, that means it’ s an offset to the
actual data.

All offsets are relative to the start of resource section.
Let’ s walk an example

158

Resources 5

» Using resources in Visual Studio:
http://msdn.microsoft.com/en-us/library/
/zxb70x7.aspx since | don’ t want to get into it.

» Both legitimate software and malware can
embed additional binaries in the resources and
then pull them out and execute them at
runtime. E.g. ProcessExplorer and
GMER .exes have kernel drivers embedded
which they load on demand. Stuxnet also had
numerous difference components such as
kernel drivers, exploit code, dll injection
templates, and config data embedded in
resources.

159

ProcessEXxplorer.exe's resources

 Has embedded kernel drivers which it
extracts and loads into memory on the
fly. Different versions for x86 vs x86-64

 Look at the overloaded structs In
PEView.

160

T

1

¥
v

1

'Il;'?l_l'l"v’ll"l

Hii1E

™~
L -~
"

h I~

WA -
D WO
- O
p—_—
E Ow
T
e
W O

e -

..

-
I VT Ve VASE MOIDF JeORT MAT

Ty

e]

struct _IMAGE_DATA_DIRECTORY {
DWORD VirtualAddress;
DWORD Size;

| Portable Executable Format |

O . waa e
— SuCue pored Ty Te puwe
Lot \oceed or Mon Cec 38 2000

Image by Ero Carrera

LOad CO nflg U rathn from winnt.h

« Another struct which doesn’ t rate inclusion in the picture
typedef struct {

DWORD
DWORD
WORD

WORD

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
WORD

WORD

DWORD
DWORD
DWORD
DWORD

Size;

TimeDateStamp;

MajorVersion;

MinorVersion;

GlobalFlagsClear;

GlobalFlagsSet;
CriticalSectionDefaultTimeout;
DeCommitFreeBlockThreshold;
DeCommitTotalFreeThreshold;
LockPrefixTable; // VA
MaximumAllocationSize;
VirtualMemoryThreshold;
ProcessHeapFlags;
ProcessAffinityMask;

CSDVersion;

Reservedl;

EditList; // VA
SecurityCookie; // VA
SEHandlerTable; // VA
SEHandlerCount;

} IMAGE LOAD CONFIG DIRECTORY32

162

Load Config

SecurityCookie is a VA (not RVA, therefore subject to
fixups) which points at the location where the stack cookie
used with the /GS flag will be.

SEHandlerTable is a VA (not RVA) which points to a
table of RVAs which specify the only exception handlers
which are valid for use with Structured Exception Handler

(SEH). The placement of the pointers to these handlers is
caused by the /SAFESEH linker options.

Take Corey Kallenberg's exploits class to see how
SafeSEH mitigates exploits.

SEHandlerCount is then just the number of entries in the
array pointed to by SEHandlerTable.

See http://msdn.microsoft.com/en-us/library/ms680328
(VS.85).aspx for a description of the rest of the fields

163

ISAFESEH

(There's no GUI option for this, and MS says to just set it manually)
http://msdn.microsoft.com/en-us/library/9a89nh429(v=VS.100).aspx

+- Common Properties All options:
= Configuration Properties JOUT:"C:\Documents and Settings\useriDeskkopLifeOfBinaries\Debuglscratch. exe"
General JINCREMENTAL:NO [NOLOGO MANIFEST /MANIFESTFILE:"Debug\scratch.exe.intermediate.manifest”
Debugaing IMANIFESTUAC: "level="asInvoker' vidccess="false™ /DEBUG [PDB:"c:\Documents and
& ClCH+ Settings'l,user\,Desktop'l,LifeOFBinarie;IDebug'l,sqratclj.pd!J" IQYNAMI(;BASE INXCQMPAT IMACHINE:XSG
e JERRORREPORT:PROMPT kernel32.lib user32.lib adi32.lib winspool.lib comdlg32.lib advapi32.lib
= Linker shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbeep32.lib
General
Input
Manifest File
Debuagging
System
Optimization
Embedded IDL
Advanced

Command Line
Manifest Tool
*ML Document Generator
Browse Information
Build Events
Custom Build Step

-

+

Additional options:
ISAFESEH]|

&

+|

l QK][Cancel || Apply

/GS "stack cookie/canary" option
Helps detect stack buffer overflows

' +- Common Properties Enable String Pooling Mo
=) Configuration Properties Enable Minimal Rebuild Yes (/Gm)
General Enable C++ Exceptions No
Debugging Smaller Type Check No
= CiC+H+ Basic Runtime Checks Default
Gen'er'al ' Runtime Library Multi-threaded Debug DLL {/MDd)
gptmzatlon Struct Member Alignment Default
reprocessor : Buffer Security Check Yes v
Code Generation , _
Enable Function-Level Linking No (fGS-)
Language .
) Enable Enhanced Instruction Set
Precompiled Headers . ' e :
Output Files Floating Point Model <inherit from parent or project defaults >
Browse Information Enable Floating Point Exceptions T
Advanced
Command Line
i+ Linker
+ Manifest Tool
(#- XML Document Generator
+ Browse Information
+- Build Events
+)- Custom Build Step
Buffer Security Check

Check for buffer overruns; useful For closing hackable loopholes on internet servers, The default is
enabled. ({JGS-)

165

T

SIRETER

1% M g e B R
P e]
—— e Ty e o)
. - %e T o e W d e ©
L)

)

FESTER

struct _IMAGE_DATA_DIRECTORY {
0x00 DWORD VirtualAddress;
< | 0x04 DWORD Size;

e

o
.
e
-

3

Ty

. MADE WPONT B NN

-
MADE WPORT e WA SR

| Portable Executable Format |

0 . it paee
— SuCue pored Ty Te puwe
Lanvt vocheied or Mon Cec 25 X005

Image by Ero Carrera

Digitally Signed Files
(“Authenticode™)

Where certificates are stored

http://msdn.microsoft.com/en-us/library/
ms537361(VS.85).aspx

“The utility programs use the private key
to generate a digital signature on a
digest of the binary file and create a
signature file containing the signed
content of a public key certificate
standard (PKCS) #7 signed-data object”

ProcessExplorer as an example

167

And the rest

* Most of the rest of the DataDirectory(]

entries don't even apply to x86,
therefore they have been moved to the

backup slides

168

SEN

o o

OS Loader: Load Time

(roughly based on the description of the Win2k loader here:
http://msdn.microsoft.com/en-us/magazine/cc301727.aspx)

Copy file from disk to memory per the section headers'
specification of file offsets being mapped to virtual addresses.
Select randomized base virtual address if ASLR compatible.
Set the backend RWX permissions on the virtual memory
pages (with NX if asked for.)

Fix relocations (if any)

Recursively check whether a DLL is already loaded, and if not,
load imported DLLs (and any forwarded-to DLLs) and resolve
imported function addresses placing them into the IAT. After
every DLL is imported, call each DLL's entry point.

Resolve any bound imports in the main executable which are
out of date.

Transfer execution to any TLS callbacks

Transfer execution to the executable's entry point specified in
the OptionalHeader

169

PRERIIIIIRERRRIENENY

W WAGE EAPONT DN

LT TS ——
B4 DHCRD e
- A o
- e

S DWORO

.
.

e

- A AT AN

~

.~
TN NAGE OFTONA SEADE i

v

-

woare "
o0 FYTE eadMADE BATIOF BeOWT A

CREREETUITECETERRRREEIIISNUNIER]

et
DWTRD S A gt
DWCAT ik g
1 Vg T v N B

e ——
B e e

s

v

a

o~
—
—-—

TR DN O

TR DN ERDPTEN

TR D

WASE ZATA SPECTONY
- a—

T

WASE ZATA SPNCTONY
v~ -
v

AT CHNITION I DA

SemCYOY

-
~ wan s 8"
tose FIVCRE TN DN O st

e L L
e et

oo
P AMADE_SRECTONY BN BOUND NI

- -y
e b L TT
* XN N

HHHH

i’ ot WAL T D
(R

g’ won MASE WPONT B AN
"

www.openrce.org/reference_library/files/reference/PE%20Format.pdf

e

e

Image by Ero Carrera

