
Introduction to Intel x86-64
Assembly, Architecture,

Applications, & Alliteration

Xeno Kovah – 2014
xkovah at gmail

All materials is licensed under a Creative
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's ‘Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

Bomb lab

• From CMU architecture class - http://
csapp.cs.cmu.edu/public/labs.html

• Thanks to Randal E. Bryant & David R.
O’Hallaron for providing the source code so it
could be ported to x86-64 (and Windows in
the Intro RE class)

• The textbook for the class which the bomb lab
is a part of is “Computer Systems: A Programmer's
Perspective, 2nd Edition, Prentice Hall, 2011; Bryant
and O'Hallaron”

http://csapp.cs.cmu.edu/public/labs.html
http://www.amazon.com/gp/product/0136108040/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0136108040&linkCode=as2&tag=opensecuinfo-20&linkId=6LT5HKEUJJYSI3T4

Bomb lab 2

• Goal is to reverse engineer multiple phases to
determine the program’s desired input

• Create a text file with answers, one per line,
named “answers”

• gdb -x myCmds bomb
• run with “r < answers”
• Should add/remove breakpoints on the

different phases as you go along

Bomb lab - EXPERT MODE!

• If you already know a thing or two about asm
(and were just here for the 64 bit update), let’s
see how far you can get how fast if you play it
on expert mode, without symbol information.
Execute the following command in the
directory where the bomb resides:

• strip bomb
• This is more like what you will actually see

with malware. You’re not going to get symbols
in that case.

• Now go ahead and see how fast you can go
through the rounds ;)

Phase_2 hint

• sscanf() is defined as follows:
• int sscanf(const char *str, const char *format, ...);!
• So if it was e.g. “sscanf(foo, “%d %d”, &a, &b)”
• It would take whatever string was pointed to by the

first argument, parse it according to the second format
string argument, and then store the parsed out values
in the variables which were given by the subsequent n
arguments (for n = 2 in this case)

• “On success, the function returns the number of
variables filled"

Phase_2 hint

• sscanf() is defined as follows:
• int sscanf(const char *str, const char *format, ...);!
• So if it was e.g. “sscanf(guess, “%d %d %d %d %d

%d”, &var1, &var2, &var3, &var4, &var5, &var6,)”

GDB/Bomb Lab Cheat Sheet

• Christian Arllen found this, and it has
many more example of gdb syntax, as
well as some help for if you get stuck on
the lab

!
• http://condor.depaul.edu/~jriely/

csc373fall2010/extras/mygdbnotes.txt
• (get it on google cache while you can,

because it's gone now)

