
Introduction to Intel x86-64 
Assembly, Architecture, 

Applications, & Alliteration

Xeno Kovah – 2014 
xkovah at gmail



All materials is licensed under a Creative 
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

Attribution condition: You must indicate that derivative work 
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html” 

Attribution condition: You must indicate that derivative work 
"Is derived from Xeno Kovah's ‘Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html"



Discussion: variable-length 
opcodes

• Any given sequence of bytes can be interpreted in 
different ways, depending on where the CPU starts 
executing it from 

• This has many subtle implications, but it seems to get 
abused the most in the security domain  

• Examples: inability to validate intended instructions, 
return-oriented-programming, code obfuscation and 
polymorphic/self-modifying code 

• In comparison, RISC architectures typically have fixed 
instruction sizes, which must be on aligned 
boundaries, and thus makes disassembly much 
simpler



Variable-length opcode 
decoding example

(gdb) x/10i $rip 
   0x4004ed <main>:    push   %rbp 
   0x4004ee <main+1>:   mov    %rsp,%rbp 
   0x4004f1 <main+4>:   movl   $0xdeadbeef,-0x4(%rbp) 
   0x4004f8 <main+11>:  mov    -0x4(%rbp),%eax 
   0x4004fb <main+14>:  mov    %eax,%eax 
   0x4004fd <main+16>:  mov    %eax,%eax 
   0x4004ff <main+18>:  mov    %eax,-0x4(%rbp) 
   0x400502 <main+21>:  pop    %rbp 
   0x400503 <main+22>:  retq !
(gdb) x/10i $rip+9 
   0x4004f6 <main+9>:   lods   %ds:(%rsi),%eax 
   0x4004f7 <main+10>:  fimul  -0x3f7603bb(%rbx) 
   0x4004fd <main+16>:  mov    %eax,%eax 
   0x4004ff <main+18>:  mov    %eax,-0x4(%rbp) 
   0x400502 <main+21>:  pop    %rbp 
   0x400503 <main+22>:  retq  

(gdb) x/10i $rip+3 
   0x4004f0 <main+3>:   in     $0xc7,%eax 
   0x4004f2 <main+5>:   rex.RB cld  
   0x4004f4 <main+7>:   out    %eax,(%dx) 
   0x4004f5 <main+8>:   mov    $0x458bdead,%esi 
   0x4004fa <main+13>:  cld     
   0x4004fb <main+14>:  mov    %eax,%eax 
   0x4004fd <main+16>:  mov    %eax,%eax 
   0x4004ff <main+18>:  mov    %eax,-0x4(%rbp) 
   0x400502 <main+21>:  pop    %rbp 
   0x400503 <main+22>:  retq  !
(gdb) x/10i $rip+15 
   0x4004fc <main+15>:  rorb 
$0x5d,-0x3ba7640(%rcx) 
   0x400503 <main+22>:  retq

x86 has been called “self-synchronizing” because it does eventually seem to get back to the correct asm. That’s not a useful property for execution, only for disassemblers trying to speculate on a correct disassembly.



Discussion: variable-length 
opcodes

• An interesting property of x86 is that even if you pick a 
wrong offset to start disassembling from, very 
frequently the disassembly will re-synchronize with the  
original, intended, instruction sequence 

• In the preceding examples you can see that when 
disassembly is started at +3 bytes in, it re-synchs by 
+14 bytes. When started at +9, it re-synchs by +16, 
etc. 

• This was noted also in “Obfuscation of Executable 
Code to Improve Resistance to Static Disassembly” 
by Linn & Debray 
– http://www.cs.arizona.edu/solar/papers/CCS2003.pdf

http://www.cs.arizona.edu/solar/papers/CCS2003.pdf

