
Introduction to Intel x86-64
Assembly, Architecture,

Applications, & Alliteration

Xeno Kovah – 2014
xkovah at gmail

All materials is licensed under a Creative
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's ‘Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

MulDivExample.c
int main(){
 unsigned int a = 1;
 a = a * 6;
 a = a / 3;
 return 0x2bad;
}

main:
0000000140001010 sub rsp,18h
0000000140001014 mov dword ptr [rsp],1
000000014000101B mov eax,dword ptr [rsp]
000000014000101E imul eax,eax,6
0000000140001021 mov dword ptr [rsp],eax
0000000140001024 xor edx,edx
0000000140001026 mov eax,dword ptr [rsp]
0000000140001029 mov ecx,3
000000014000102E div eax,ecx
0000000140001030 mov dword ptr [rsp],eax
0000000140001033 mov eax,2BADh
0000000140001038 add rsp,18h
000000014000103C ret

We already saw that when a C operand is a power of 2, it uses shifts instead of multiplies/divides, but this shows that in other cases, it uses multiply or divide instructions.

DIV - Unsigned Divide

• Three forms
– Unsigned divide ax by r/m8, al = quotient, ah = remainder
– Unsigned divide edx:eax by r/m32, eax = quotient, edx = remainder
– Unsigned divide rdx:rax by r/m64, rax = quotient, rdx = remainder

• If dividend is 32/64bits, edx/rdx will just be set to 0 by the
compiler before the instruction (as occurred in the
MulDivExample.c code)

• If the divisor is 0, a divide by zero exception is raised.

27

ax r/m8(cx)

0x8 0x3

ah al

0x2 0x2

div ax, cx

edx eax r/mX(ecx)

0x0 0x8 0x3

edx eax r/mX(ecx)

0x1 0x2 0x3

div eax, ecx

Book p. 221

initial

operation

result

Note that there’s no form which takes an immediate.

IDIV - Signed Divide
• If you were to then change MulDivExample to signed,

you would see the IDIV instruction appear
• Three forms

– Unsigned divide ax by r/m8, al = quotient, ah = remainder
– Unsigned divide edx:eax by r/mX, eax = quotient, edx = remainder
– Unsigned divide rdx:rax by r/m64, rax = quotient, rdx = remainder

• If dividend is 32/64bits, edx/rdx will just be set to 0 by the
compiler before the instruction

• If the divisor is 0, a divide by zero exception is raised.

28

ax r/m8(cx)

0xFE 0x2

ah al

0x0 0xFF

div ax, cx

edx eax r/mX(ecx)

0x0 0x8 0x3

edx eax r/mX(ecx)

0x1 0x2 0x3

div eax, ecx

Book p. 222

initial

operation

result

Note that there’s no form which takes an immediate.

MulDivExample.c takeaways

int main(){
 unsigned int a = 1;
 a = a * 6;
 a = a / 3;
 return 0x2bad;
}

main:
0000000140001010 sub rsp,18h
0000000140001014 mov dword ptr [rsp],1
000000014000101B mov eax,dword ptr [rsp]
000000014000101E imul eax,eax,6
0000000140001021 mov dword ptr [rsp],eax
0000000140001024 xor edx,edx
0000000140001026 mov eax,dword ptr [rsp]
0000000140001029 mov ecx,3
000000014000102E div eax,ecx
0000000140001030 mov dword ptr [rsp],eax
0000000140001033 mov eax,2BADh
0000000140001038 add rsp,18h
000000014000103C ret

• When a multiply or divide is not by a power of 2, compilers will use
normal multiply/divide instructions

• VS compiler prefers IMUL over MUL (unsigned multiply) for simple
multiplies, due to its option to use 3 parameters

We already saw that when a C operand is a power of 2, it uses shifts instead of multiplies/divides, but this shows that in other cases, it uses multiply or divide instructions.

Instructions we now know (28)
• NOP
• PUSH/POP
• CALL/RET
• MOV
• ADD/SUB
• IMUL
• MOVZX/MOVSX
• LEA
• JMP/Jcc (family)
• CMP/TEST
• AND/OR/XOR/NOT
• INC/DEC
• SHR/SHL/SAR/SAL
• DIV/IDIV

