
Introduction to Intel x86-64
Assembly, Architecture,

Applications, & Alliteration

Xeno Kovah – 2014-2015
xeno@legbacore.com

All materials is licensed under a Creative
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's ‘Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

Architecture - CISC vs. RISC

• Intel is CISC - Complex Instruction Set
Computer
– Many very special purpose instructions that you will

never see, and a given compiler may never use -
just need to know how to use the manual

– Variable-length instructions, between 1 and 15
bytes long.

• Other major architectures are typically RISC -
Reduced Instruction Set Computer
– Typically more registers, less and fixed-size

instructions
– Examples: PowerPC, ARM, SPARC, MIPS

Take a look, it’s in a book!
• Thanks to Dillon Beresford for sending

concrete examples of the longest possible
instructions, back when my slides said I was
unsure on the max length:

“Longest x86 instruction is 15 bytes in 16-bit
mode and 13 bytes in 32-bit mode:
[16-bit]
66 67 F0 3E 81 04 4E 01234567 89ABCDEF
add [ds:esi+ecx*2+0x67452301], 0xEFCDAB89
[32-bit]
F0 3E 81 04 4E 01234567 89ABCDEF”
• If we get to the RTFM material by the end,

you’ll be able to sort of read those ;)

Architecture - Endian
• Endianness comes from Jonathan Swift’s Gulliver’s

Travels. It doesn’t matter which way you eat your eggs
• Little Endian - 0x12345678 stored in RAM “little end”

first. The least significant byte of a word or larger is
stored in the lowest address. E.g. 0x78563412
– Intel is Little Endian

• Big Endian - 0x12345678 stored as is.
– Network traffic is Big Endian
– Many larger RISC systems (PowerPC, SPARC, MIPS,

Motorola 68k) started as Big Endian but can now be
configured as either (Bi-Endian). ARM started out Little
Endian and now is Bi-Endian

Endianess pictures
Big Endian

(Others)
Little Endian

(Intel)

Register Register

Low Memory
Addresses

CE
FA
ED
FE

High Memory
Addresses

FE
ED
FA
CE

CEFAEDFE CEFAEDFE

0x0

0x1

0x2

0x3

00
00

00
000x4

0x5

How you’ll probably usually
see endianness expressed:

lowhigh

low high

high
Memory dump windows are typically shown
in typical English writing left-to-right, top-to-
bottom form, with the upper left being the
lowest address

Register view windows
always show the registers
in big endian order

But if you change the display size…

lowhigh

low high

high

If you start asking the debugger to display things, 2, 4, or 8 bytes at a time, it
will typically take those chunks and display them each big endian order

Architecture - Registers

• Registers are small memory storage areas
built into the processor (still volatile memory)

• 16 “general purpose” registers + the
instruction pointer which points at the next
instruction to execute
– But two of the 16 are not that general

• On x86-32, aka IA32 registers are 32 bits long
• On x86-64, aka IA32e they’re 64 bits

B
oo

k
C

ha
pt

er
 5

Architecture - Register
Conventions 1

These are Intel’s suggestions to compiler
developers (and assembly handcoders).
Registers don’t have to be used these ways,
but if you see them being used like this, you’ll
know why. But I simplified some descriptions. I
also color coded as GREEN for the ones which
we will actually see in this class (as opposed to
future ones), and RED for not.

• RAX - Stores function return values
• RBX - Base pointer to the data section
• RCX - Counter for string and loop operations
• RDX - I/O pointer

Intel Arch v1 Section 3.4.1 - General-Purpose Registers, page 3-11
Also MS’s conventions: http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx

http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx

Architecture - Registers
Conventions 2

• RSI - Source pointer for string
operations

• RDI - Destination pointer for string
operations

• RSP - Stack top pointer
• RBP - Stack frame base pointer
• RIP - Pointer to next instruction to

execute (“instruction pointer”)

Architecture - Registers – 8/16/32/64 bit addressing 1

http://www.sandpile.org/x86/gpr.htm

Architecture - Registers – 8/16/32/64 bit addressing 2
(note: we didn’t previously have low-byte access to *SP, *BP, *SI, or *DI!)

http://www.sandpile.org/x86/gpr.htm

Architecture - Registers – 8/16/32/64 bit addressing 3

http://w
w

w
.sandpile.org/x86/gpr.htm

note to scornwell: maybe a simple game here like:
“DIL is the 8 least-significant-bit access for which 64 bit register?” (RDI)
“What is the word-sized access register for R14 called?” (R14W)
“What is the 16 bit access for R14 called?” (R14W)

Architecture - Registers
Conventions 3

• Caller-save registers (also called “volatile” registers by MS)
• If the caller has anything in the registers that it cares about,

the caller is in charge of saving the value before a call to a
subroutine, and restoring the value after the call returns

• Put another way - the callee can (and is highly likely to)
modify values in caller-save registers

• VisualStudio: RAX, RCX, RDX, R8-R11
• GCC: RAX, RCX, RDX, RSI, RDI, R8-R11

• Callee-save registers (also called “non-volatile” registers by MS)
• If the callee needs to use more registers than are saved by

the caller, the callee is responsible for making sure the
values are stored/restored

• Put another way - the callee must be a good citizen and not
modify registers which the caller didn’t save, unless the
callee itself saves and restores the existing values

• VisualStudio: RBX, RBP, RDI, RSI, R12-R15
• GCC: RBX, RBP, R12-R15

http://msdn.microsoft.com/en-us/library/6t169e9c.aspx, http://en.wikipedia.org/wiki/X86_calling_conventions

http://msdn.microsoft.com/en-us/library/6t169e9c.aspx
http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx

Architecture - RFLAGS

Intel Vol 1 Sec 3.4.3.1 - page 3-22 - May 2012 manuals

• “In 64-bit mode, EFLAGS is extended to 64
bits and called RFLAGS. The upper 32 bits
of RFLAGS register is reserved. The lower
32 bits of RFLAGS is the same as EFLAGS.”

• RFLAGS register holds many single bit flags.
Will only ask you to remember the following
for now.
– Zero Flag (ZF) - Set if the result of some instruction is

zero; cleared otherwise.
– Sign Flag (SF) - Set equal to the most-significant bit of

the result, which is the sign bit of a signed integer. (0
indicates a positive value and 1 indicates a negative
value.)

S
F

= Intro x86-64

R
F

I
O
P
L

I
F

I
D

D
F

O
F

A
F

P
F

C
F

T
F

Intel Vol 1 Sec 3.4.3.1 - page 3-21 - May 2012 manuals

= Intermediate x86-64 Z
F

Architecture - RFLAGS

Intel Vol 1 Sec 3.4.3.1 - page 3-21 to 3-22 - May 2012 manuals

• I only want you to memorize zero flag and sign flag for now, but
for your own curiosity and later reference here’s how others work

• Carry flag (CF) - Set if an arithmetic operation generates a carry
or a borrow out of the most-significant bit of the result. This flag
indicates an overflow condition for unsigned-integer arithmetic.

• Overflow flag (OF) — Set if the integer result is too large a
positive number or too small a negative number (excluding the
sign-bit) to fit in the destination operand. This flag indicates an
overflow condition for signed-integer (two’s complement)
arithmetic.

• Parity flag (PF) — Set if the least-significant byte of the result
contains an even number of 1 bits

• Auxiliary flag (AF) — Set if an arithmetic operation generates a
carry or a borrow out of bit 3 of the result; cleared otherwise. This
flag is used in binary-coded decimal (BCD) arithmetic.

• You will only ever see instructions that depend on the PF or AF in
very specialized circumstances

Note to scornwell: In one-step, three-step, we can teach PF and AF-based jumps in the later advanced rounds. It should start with SF/ZF-based ones, then
move on to CF/OF-based ones, and then eventually PF/AF-based ones

Your first x86-64 instruction: 
NOP

• NOP - No Operation! No registers, no
values, no nothin’!

• Just there to pad/align bytes, or to delay
time

• Bad guys use it to make simple exploits
more reliable. But that’s another class ;)

• OpenSecurityTraining.info/Exploits1.html

1

Extra! Extra! 
Late-breaking NOP news!

• Amaze those who know x86 by citing this
interesting bit of trivia:

• “The one-byte NOP instruction is an alias mnemonic
for the XCHG (E)AX, (E)AX instruction.”
– I had never looked in the manual for NOP apparently :)

• Every other person I had told this to had never heard
it either.

• Thanks to Jon Erickson for cluing me in to this.
• XCHG instruction is not officially in this class. But if I

hadn’t just told you what it does, I bet you would have
guessed right anyway.

Instructions we now know (1)

• NOP

