Introduction to Intel x86-64
Assembly, Architecture,
Applications, & Alliteration

Xeno Kovah — 2014-2015
xeno@legbacore.com

All materials is licensed under a Creative
Commons “Share Alike” license.

 http://creativecommons.org/licenses/by-sa/3.0/

You are free:

10 Share — 10 copy, dis¥ribuie and transma the work
10 Remix — to adapt the work

Under the following conditions:

Attnbution — You must attnbute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

yOour use of the work

Share Alike — If you aher, transform, or build upon this work, you ma
disinbule the resulbng work only under the same, Similar or 3 compalible

license

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work

"Is derived from Xeno Kovah's ‘Intro x86-64" class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

Architecture - CISC vs. RISC

* Intel is CISC - Complex Instruction Set
Computer

— Many very special purpose instructions that you will
never see, and a given compiler may never use -
just need to know how to use the manual

— Variable-length instructions, between 1 and 15
bytes long.
« Other major architectures are typically RISC -
Reduced Instruction Set Computer

— Typically more registers, less and fixed-size
instructions

— Examples: PowerPC, ARM, SPARC, MIPS

Take a look, it's in a book!

« Thanks to Dillon Beresford for sending
concrete examples of the longest possible
instructions, back when my slides said | was
unsure on the max length:

“Longest x86 instruction is 15 bytes in 16-bit
mode and 13 bytes in 32-bit mode:

[16-Dbit]

66 67 FO 3E 81 04 4E 01234567 89ABCDEF
add [ds:esi+ecx*2+0x67452301], OxEFCDABS89
[32-Dbit]

FO 3E 81 04 4E 01234567 89ABCDEF”

* [f we get to the RTFM material by the end,
you'll be able to sort of read those ;)

Architecture - Endian

« Endianness comes from Jonathan Swift's Gulliver’s
Travels. It doesn’t matter which way you eat your eggs

« Little Endian - 0x12345678 stored in RAM “little end”
first. The least significant byte of a word or larger is
stored in the lowest address. E.g. 0x78563412

— Intel is Little Endian

* Big Endian - 0x12345678 stored as is.
— Network traffic is Big Endian

— Many larger RISC systems (PowerPC, SPARC, MIPS,
Motorola 68k) started as Big Endian but can now be
configured as either (Bi-Endian). ARM started out Little
Endian and now is Bi-Endian

Endianess pictures
Little Endian

Big Endian

Register

(Others)

FE

ED

FA

CE

!
00

00
.CE
-FA

~ED

-FE

(Intel)

Register

FE

ED

FA

CE

High Memory
Addresses
!
ox5 00
0x4 00
0x3 FE «
0x2 ED -
Ox1 FA <
oxo CE -

Low Memory

Addresses

How you'll probably usually
see endianness expressed:

low » high

21 43 65 87 78 56 34 12 !Ce.xV4, - @ o
88 77 66 55 44 33 22 11 “wfuo3", @ i
00 00 90 00 00 20 90 00 .
00 00 00 00 00 00 00 00 hlgh<—low
00 00 00 00 00 O0 00 00

10 €4 2b 00 00 90 00 00 .m+

00 00 00 00 00 @0 00 00
Ge 11 20 3f 01 00 00 00 n.)?

high
Memory dump windows are typically shown Register view windows
in typical English writing left-to-right, top-to- always show the registers
bottom form, with the upper left being the in big endian order

lowest address

But if you change the display size...

low » high
T A .

Address: Ox0000000000FF 450 - @ Couws: 8 »| |l | Moo o])
0000000000220 400 | 87654321 12345678 55667788 11223344 00000000 00000000 0000~ ¥ ' e
D R000000000227 400 | 00000000 00000000 00206410 00000000 00000000 B000000R 3f2911/ ® i 0xd1223344556677%8
Dr00000002 2147 0 | 00000000 00000fce D0O0ON0D 0000000 €279F378 BOON0OTE BOVOON high «— low
0000000000227 010 | 00000000 00000000 3f2912sc 00000001 00000GOD DDOOGR0 DODOON
e o | 00000000 00000000 G000GB00 C00CESD 00G00CES KB00B0OR 764659

L I L L L L]

4 »
Output Inmedate ‘o\hdov Memory 1 Locals Autos Watch 1 Call Stack

Watch 1
Address: Ox0O0O00ONN2 ¥ A%0 - @ Coumns: 8 - (L1, —
} 1234567887654321 1122334455667768 0000000000000000 00000000 o e O 2356708765431
S0 CCOGBOB0000000] CGBB000000dATAES BOCEECCEABBO000 BOACAARNH @ rdx 01 122334455667788
FELD 0000000000000000 200000013291 2sc D000000CCCODDDND DODOOLODN
0000233000000000 22DVDV00000000XY DDD0000CCAIDDDD DOCOODX
COCOGGO000000000 FOODOODORCRCAODD COO0CCCCAODDODD DOCCCRRDX
DOGOGOVVBNNNNNNG BOOVVBNNNNNIOOOS GONNNNNNOGOOON) INNNNQOOD>
0000222000000000 2IVIDDVVV0000CRY DDDD000CCAAIDDDD 000CCRDX
Output Iswedate Window Memory 1 Locals Autos ' aich | Call Stack
If you start asking the debugger to display things, 2, 4, or 8 bytes at a time, it
will typically take those chunks and display them each big endian order

Book Chapter 5

Architecture - Registers

Registers are small memory storage areas
built into the processor (still volatile memory)

16 “general purpose” registers + the
instruction pointer which points at the next
instruction to execute

— But two of the 16 are not that general
On x86-32, aka IA32 registers are 32 bits long
On x86-64, aka |1A32e they’re 64 bits

Architecture - Register
Conventions 1

These are Intel's suggestions to compiler
developers (and assembly handcoders).
Registers don’t have to be used these ways,
but if you see them being used like this, you'll
know why. But I simplified some descriptions. I
also color coded as GREEN for the ones which
we will actually see in this class (as opposed to
future ones), and RED for not.

e RAX - Stores function return values

e RBX - Base pointer to the data section

e RCX - Counter for string and loop operations
e RDX - I/O pointer

Intel Arch v1 Section 3.4.1 - General-Purpose Registers, page 3-11
Also MS’s conventions: http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx

Architecture - Registers
Conventions 2

RSI - Source pointer for string
operations

RDI - Destination pointer for string
operations

RSP - Stack top pointer
RBP - Stack frame base pointer

RIP - Pointer to next instruction to
execute (“instruction pointer”)

Architecture - Registers — 8/16/32/64 bit addressing 1

http://www.sandpile.org/x86/gpr.htm

RAX or RO
EAX or ROD
AX or ROW
AH | ALorR0B
RCX orR1
ECX orR1D
CXorR1W
CH | CLorR1B
RDX or R2
EDX or R2D
DX or R2W
DH | DLorR28
RBX or R3
EBX or R3D
BX or R3W
BH | BLorR3B

Architecture - Registers — 8/16/32/64 bit addressing 2

(note: we didn’t previously have low-byte access to *SP, *BP, *Sl, or *DI!)

http://www.sandpile.org/x86/gpr.htm

RSP or R4
rR4
SP or R4W
SPLorR4B
EBP orR5D
BP or R5SW
BPL or R58
ESlorR6D
Slor R6W
SiL or R6B
EDlor R7D
DlorR7TW
DIL or R7B
EIP
P

Architecture - Registers — 8/16/32/64 bit addressing 3
R8

RED -
RBW
a8s
RIO
RIOD
R10W
R108
R110
R11W

wyy-1dB/9gx/bi0 aj1dpues mmm//:diy

note to scornwell: maybe a simple game here like:

“DIL is the 8 least-significant-bit access for which 64 bit register?” (RDI)
“What is the word-sized access register for R14 called?” (R14W)

“What is the 16 bit access for R14 called?” (R14W)

Architecture - Registers
Conventions 3

» Caller-save registers (also called “volatile” registers by MS)

+ If the caller has anything in the registers that it cares about,
the caller is in charge of saving the value before a call to a
subroutine, and restoring the value after the call returns

« Put another way - the callee can (and is highly likely to)
modify values in caller-save registers

* VisualStudio: RAX, RCX, RDX, R8-R11
 GCC: RAX, RCX, RDX, RSI, RDI, R8-R11
» Callee-save registers (also called “non-volatile” registers by MS)

» If the callee needs to use more registers than are saved by
the caller, the callee is responsible for making sure the
values are stored/restored

* Put another way - the callee must be a good citizen and not
modify registers which the caller didn’t save, unless the
callee itself saves and restores the existing values

- VisualStudio: RBX, RBP, RDI, RSI, R12-R15
- GCC: RBX, RBP, R12-R15

http://msdn.microsoft.com/en-us/library/6t169e9c.aspx, http://en.wikipedia.org/wiki/X86_calling_conventions

Architecture - RFLAGS

« “In 64-bit mode, EFLAGS is extended to 64
bits and called RFLAGS. The upper 32 bits
of RFLAGS register is reserved. The lower
32 bits of RFLAGS is the same as EFLAGS.”

 RFLAGS register holds many single bit flags.
Will only ask you to remember the following
for now.

— Zero Flag (ZF) - Set if the result of some instruction is
zero; cleared otherwise.

— Sign Flag (SF) - Set equal to the most-significant bit of
the result, which is the sign bit of a sighed integer. (0
indicates a positive value and 1 indicates a negative
value.)

Intel Vol 1 Sec 3.4.3.1 - page 3-22 - May 2012 manuals

U = Intro x86-64

I = Intermediate x86-64

Intel Vol 1 Sec 3.4.3.1 - page 3-21 - May 2012 manuals

viv
ololojo|ole|ole|o]o
ple

11 A

C

v
L F

X ID Flag (1D} J J \
X Virtual Interrupt Pending (VIP) - -
X Virtual Interrupt Flag (VIF)

X Alignment Check (AC)
X Virtual-8085 Mode (VM)

S
F

MmN

3102028272026 2423222920108 1796151493121110 9 6776 5 4 3 2 1

A P
°F°F1

0

C
F

X Resume Flag (RF)
X Nested Task (NT)-
X /O Privilege Level (IOPL)
S Overflow Flag (OF)

C Direction Flag (OF)

Interrupt En‘r;ble Flag (IF)

S Indicates a Status Flag
C Indicates a Control Flag

X Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set 1o values previously read.

Figure 3-8. EFLAGS Register

Architecture - RFLAGS

| only want you to memorize zero flag and sign flag for now, but
for your own curiosity and later reference here’s how others work

» Carry flag (CF) - Set if an arithmetic operation generates a carry
or a borrow out of the most-significant bit of the result. This flag
indicates an overflow condition for unsigned-integer arithmetic.

» Overflow flag (OF) — Set if the integer result is too large a
positive number or too small a negative number (excluding the
sign-bit) to fit in the destination operand. This flag indicates an
overflow condition for signed-integer (two’s complement)
arithmetic.

» Parity flag (PF) — Set if the least-significant byte of the result
contains an even number of 1 bits

* Auxiliary flag (AF) — Set if an arithmetic operation generates a
carry or a borrow out of bit 3 of the result; cleared otherwise. This
flag is used in binary-coded decimal (BCD) arithmetic.

* You will only ever see instructions that depend on the PF or AF in

very specialized circumstances
Intel Vol 1 Sec 3.4.3.1 - page 3-21 to 3-22 - May 2012 manuals

Note to scornwell: In one-step, three-step, we can teach PF and AF-based jumps in the later advanced rounds. It should start with SF/ZF-based ones, then

move on to CF/OF-based ones, and then eventually PF/AF-based ones

% Your first x86-64 instruction:
NOP

* NOP - No Operation! No registers, no
values, no nothin’!

« Just there to pad/align bytes, or to delay
time

« Bad guys use it to make simple exploits
more reliable. But that’'s another class ;)

* OpenSecurityTraining.info/Exploits1.html

Extra! Extra!
Late-breaking NOP news!

Amaze those who know x86 by citing this
interesting bit of trivia:

“The one-byte NOP instruction is an alias mnemonic
for the XCHG (E)AX, (E)AX instruction.”

— | had never looked in the manual for NOP apparently :)

Every other person | had told this to had never heard
it either.

Thanks to Jon Erickson for cluing me in to this.

XCHG instruction is not officially in this class. But if |
hadn’t just told you what it does, | bet you would have
guessed right anyway.

Instructions we now know (1)

 NOP

