
Advanced	 x86:	
BIOS	 and	 System	 Management	 Mode	 Internals	

Input/Output	

Xeno	 Kovah	 &&	 Corey	 Kallenberg	
LegbaCore,	 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	 condiEon:	 You	 must	 indicate	 that	 derivaEve	 work	
"Is	 derived	 from	 John	 BuBerworth	 &	 Xeno	 Kovah’s	 ’Advanced	 Intel	 x86:	 BIOS	 and	 SMM’	 class	 posted	 at	 hBp://opensecuritytraining.info/IntroBIOS.html”	

Input/Output (I/O)

I/O,	 I/O,	 it’s	 off	 to	 work	 we	 go…	

2 Types of I/O	
1.  Memory-Mapped I/O (MMIO)
2.  Port I/O (PIO)

–  Also called Isolated I/O or port-mapped IO (PMIO)
•  X86 systems employ both-types of I/O
•  Both methods map peripheral devices
•  Address space of each is accessed using instructions

–  typically requires Ring 0 privileges
–  Real-Addressing mode has no implementation of rings, so no privilege

escalation needed
•  I/O ports can be mapped so that they appear in the I/O address

space or the physical-memory address space (memory mapped I/O)
or both
–  Example: PCI configuration space in a PCIe system – both memory-mapped

and accessible via port I/O. We’ll learn about that in the next section
•  The I/O Controller Hub contains the registers that are located in both

the I/O Address Space and the Memory-Mapped address space

4	

Memory-Mapped I/O 	 	

•  Devices can also be mapped to the physical address
space instead of (or in addition to) the I/O address space

•  Even though it is a hardware device on the other end of
that access request, you can operate on it like it's
memory:
–  Any of the processor’s instructions that reference memory can

be used to access an I/O port located at a physical-memory
address (MOV, for example)

–  Operations like AND, OR, and TEST can be used on data at a
memory-mapped address

•  Access byte, word, dword
•  The MOV instruction itself requires privileges only in

protected mode based on the privilege level of the
descriptor describing the segment

5	

Memory-Mapped I/O 	 	

•  For people not accustomed to working in low-level
space, the term memory mapping can be a little
confusing, mainly because of how the term is often used,
for example:

•  “Device X is mapped to memory.”
•  People sometimes get confused by this phrasing:

–  Are it’s contents copied to RAM? Or are memory accesses
destined for that memory range redirected (decoded) to the
device?

•  It’s the second one. Accesses destined to that memory
range are decoded to the device

6	

Memory Mapped IO	

•  The colored regions are
memory mapped devices

•  Accesses to these memory
ranges are decoded to a
device itself

•  Flash refers to the BIOS
flash

•  APIC is the Advanced
Programmable Interrupt
Controller

•  PCI Memory range is
programmed by BIOS in the
PCIEXBAR

7	

Peripherals that Map to Both	
•  Devices can map to both memory and IO address space
•  PCI Express is a good example of devices that map to

both the IO address space and the physical memory
address space

•  Compatible PCI configuration space maps to IO
Addresses CF8h and CFCh

•  Both Compatible PCI configuration space plus the
extended header are also mapped to a memory location/
size defined by the PCIEXBAR register located in the
DRAM Controller

•  We'll get into this again once we get to PCI

8	

Port I/O Address Space 	 	
•  Software and hardware architectures of x86

architecture support a separate address
space called “I/O Address Space”

–  Separate from memory space
•  Access to this separate I/O space is

handled through a set of I/O instructions
–  IN,OUT, INS, OUTS

•  Access requires Ring0 privileges
–  Access requirement does not apply to all

operating modes (like Real-Mode)
•  The processor allows 64 KB+3 bytes to be

addressed within the I/O space
•  Harkens back to a time when memory was

not so plentiful
•  You may never see port I/O when analyzing

high-level applications, but in systems
programming (and especially BIOS) you will
see lots of port I/O

•  One of the biggest impediments to
understanding what's going on in a BIOS

Port	 0	

Port	 1	

Port	 2	

Port	 3	

Port	 4	

Port	 65535	

0x0000

0x0001

0x0002

0x0003

0x0004

0xFFFF

.	

.	

.	

I/O	 Address	 Space	

.	

.	

.	

Intel	 Programmer’s	 guide,	 Vol	 1,	 16.1	 9	

Port I/O Accesses	
•  Port I/O access are handled

by the Controller Hub (ICH/
PCH)
–  So in a chipset that has a

Memory Controller Hub
(MCH), the MCH performs no
translation of accesses to I/O
space

–  The MCH just forwards them
to DMI (and thus to the I/O
Controller Hub)

•  The Controller Hub contains
the registers that are located
in the I/O address space

•  Again, separate and distinct
from physical memory
address space

Intel	 Programmer’s	 guide,	 Vol	 1,	 16.1	

I/O	 	
Space	

0xFFFF

0x0000

10	

How	 does	 the	 hardware	 disEnguish	
between	 port	 IO	 and	 memory	 access?	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Intel	 8088	 chip	
	 	 	 	 	 	 	 	 	 	 (from	 the	 bad	 old	 days)	

hBp://www.cpu-‐
world.com/info/
Pinouts/8088.html	 	

There's	 a	 pin	
for	 that!	

11	

I/O Mapped Address Space	

•  I/O Address space consists of two ranges or
types of access:

1.  Fixed
–  Addresses/peripherals cannot be relocated
–  In some instances they can be disabled, but not

all
2.  Variable

–  These addresses can be relocated
–  Can also be disabled

•  Addressable size can be 8 bits, 16 bits, or
32 bits

12	

1. Fixed I/O Ports	

•  The addresses depend on the implementation of the I/O
Controller Hub present in your system
–  Check the I/O Controller Hub Datasheet to make sure you are

interpreting these signals properly
•  Address ranges that are not listed or marked “Reserved” are

not decoded by the ICH
–  Unless one of the variable ranges has been relocated to that

address
•  Each fixed IO address is a 2-byte word
•  Remember, on the “other side” of each port address/range

there is a hardware device
–  Device interaction and behavior will differ between devices
–  This is why it can be difficult to decipher when analyzing

•  Port I/O is a gateway to a black box

Intel,	 Vol	 1,	 16.1	 13	

Example: ICH 9 Fixed Range 	 	

14	

Port	 60	 is	 the	 historic	
locaEon	 of	 the	 8042	
keyboard	 controller	
status/command	 port.	
And	 port	 64	 is	 the	 data	
port.	 NoEce	 how	 it	
doesn't	 tell	 you	 that,	 it	
just	 says	 they're	 being	
forwarded	 on	 to	 LCP.	
Annoying	 for	 trying	 to	
figure	 out	 what's	 being	
talked	 to	

15	

Takeaway:	 there’s	 a	 lot	 of	 fixed	 IO	 address	 space,	 and	 it’s	 fragmented	 too.	 	 This	 is	 why	 it’s	
recommended	 that	 devices	 map	 their	 interfaces	 to	 memory	 rather	 than	 IO	 address	 space	

This	 one	 we’ll	
talk	 about	 	

explicitly	 later	 in	 the	 	
context	 of	 SMM	

16	

2. Variable I/O Ports	
•  Can be relocated to another address
•  Can be set/disabled using Base Address Registers

(BARs) or configuration bits in the various PCI
configuration spaces
–  Which we shall discuss very soon!

•  The BIOS (and/or other PCI devices or ACPI) can adjust
these values
–  Actually pretty much any privileged app can…

•  The same as the fixed range, on the “other side” of each
port address/range there is a peripheral device
–  Device interaction and behavior will differ between devices

•  ICH does not check for overlap
–  Results “unpredictable” if overlapping

•  Has been used for virtualization attacks

Intel,	 Vol	 1,	 16.1	 17	

Example: ICH 9 Variable IO Range	

18	

IN - Input from Port

•  Note it's DX, not DL. That means the DX form can specify all 2^16
ports, but the IMM8 form can only specify 2^8 ports.

•  “When accessing a 16- and 32-bit I/O port, the operand-size
attribute determines the port size.” (Because as usual there's an
overloaded opcode for 16/32 bit form)
–  Remember if you're in a 16 bit segment it's 16 bit, if you're in a 32 bit

segment it's 32 bit. But you can override it with an operand size
instruction prefix which is talked about later.

19	 From	 Xeno	 Kovah’s	 Intermediate	 X86	 class:	 hBp://OpenSecurityTraining.info/IntermediateX86.html	

OUT - Output to Port

•  Basically the same caveat as IN

20	 From	 Xeno	 Kovah’s	 Intermediate	 X86	 class:	 hBp://OpenSecurityTraining.info/IntermediateX86.html	

IO	 Privilege	 Level	

•  There	 are	 two	 bits	 in	 the	 *FLAGS	 register	
which	 the	 OS	 will	 typically	 set	 to	 0,	 which	
indicate	 that	 only	 ring	 0	 is	 allowed	 to	 issue	 the	
IN/OUT	 instrucEons	

21	

S
F

= Intro x86-64

R

F

I
O
P
L

I
F

I
D

D

F

O

F

A
F

P
F

C

F

T
F

Intel Vol 1 Sec 3.4.3.1 - page 3-21 - May 2012 manuals

= Intermediate x86-64
Z
F

Port IO Assembly Examples
(showing that you can either use an 8 bit immediate or a 16 bit register (dx) to specify port

and 8 bit immediate or 8/16/32 bit registers (but only AL/AX/EAX) to specify the data being read/
written)	

Read from port 0xB3:

Write 0x1234 to port 0xB2: MOV	 AX,	 0x1234	
OUT	 0xB2,	 AX	

MOV	 AX,	 0x1234	
MOV	 DX,	 0xB2	
OUT	 DX,	 AX	

MOV	 DX,	 0x70	
OUT	 DX,	 0x05	
MOV	 DX,	 0x71	
IN	 EAX,	 DX	

IN	 AL,	 0xB3	

Index/Data pair read offset 0x05: MOV	 AL,	 0x05	
MOV	 DX,	 0x70	
OUT	 DX,	 AL	
MOV	 DX,	 0x71	
IN	 EAX,	 DX	

Index/Data pair write to offset 0x05: MOV	 AL,	 0x05	
MOV	 DX,	 0x70	
OUT	 DX,	 AL	
MOV	 DX,	 0x71	
MOV	 EAX,	 0x10	
OUT	 DX,	 EAX	

23	

Port IO	

CPU	

MOV DX, PORT
OUT DX, IMM8

•  IMM8 (one byte constant) could be a command or data –
that’s up to the interpretation by the device

•  It is not necessarily known what the black box on the end
of a port does

•  Check your Controller Hub datasheet and/or the LPC
decode registers (might offer clues)

CPU	

MOV DX, PORT
IN AX, DX

Black	 Box	

Black	 Box	

24	

Port IO Index/Data Pair	

Black	 Box	

CPU	

•  Some devices use an index/data pair for IO
•  An offset is written to the index port
•  Next a value is read from or written to that offset from the Data port
•  Devices such as this are CMOS, PCI, and the Keyboard Embedded

Controller on the E6400 (per the below research)
•  http://esec-lab.sogeti.com/dotclear/public/publications/11-recon-

stickyfingers_slides.pdf

	
MOV	 DX,	 0x70	
OUT	 DX,	 IMM8	
MOV	 DX,	 0x71	
OUT	 DX,	 IMM8	
	

25	

Identifying Port I/O	
•  First try deciphering port IO devices by using the

datasheets (Controller Hub either ICH or PCH)
•  OS Dev

–  http://wiki.osdev.org/I/O_Ports (which links you to...)
•  Boch’s or Ralf’s

–  http://bochs.sourceforge.net/techspec/PORTS.LST
–  Last change was in 11/6/94 and that’s just how it is with most

BIOS information

•  Vendors can extend a device interface to any
unoccupied IO address

26	

UEFI	 indirecEon	

•  When	 we	 eventually	 get	 to	 UEFI	 you	 will	 see	
that	 there’s	 a	 lot	 of	 indirecEon.	

•  So	 this	 is	 just	 to	 say	 that	 if	 you	 were	 REing	
some	 code,	 while	 you	 might	 eventually	 find	
the	 actual	 IN/OUT	 instrucEons,	 it	 would	
suffice	 to	 find	
“EFI_CPU_IO2_PROTOCOL.Io.Read()	 and	
Io.Write()”	 which	 are	 funcEonally	 equivalent	
– You	 can	 read	 more	 about	 them	 in	 the	 UEFI	 specs’	
Volume	 5	

27	

Example: Port IO Configuring
PCIEXBAR

•  On the Mobile 4-Series Chipset, the BIOS (executed by the
CPU), configures the PCIEXBAR in the DRAM Controller

•  F800_0000h (on an E6400 with 4GB RAM for example)
•  PCI Memory range is now mapped
•  So how does this configuration actually occur? PCI…

Chipset	

Offset	 Name	 Value	

60h PCIEXBAR F8000001h

DRAM	 Controller	 B0:D0:F0	

F800_0000h

28	

