
Intermediate x86
Part 3

Xeno Kovah – 2010
xkovah at gmail

All materials are licensed under a Creative
Commons “Share Alike” license.

•  http://creativecommons.org/licenses/by-sa/3.0/

2

3

Intermission
RDTSC

•  What’s the time? Time to ReaD (the) Time-
Stamp Counter! (I know, it doesn’t even sort of work)

•  The TSC is a 64bit counter introduced in the
Pentium

•  Set to 0 when processor reset, incremented
on each clock cycle thereafter.

•  Can set a flag (in CR4) so that only Ring 0
can use the instruction (AFAIK no one does
this)

4

RDTSC 2

•  Processor families increment the time-
stamp counter differently

•  RDTSC in practice
– Timing code for performance reasons
– Code which checks for the presence of a

debugger by timing its own execution
•  Further reference - Vol. 3b chapter

18.11

5

Lab: Guestimate.c

•  Simple code to use the timestamp
counter to time how long it takes to run
some code.

6

Lab: NavelGaze.c

•  Code which looks at itself and changes
its behavior if it takes too long to
execute (e.g. if a breakpoint was set)

•  Pop quiz hot shot: You gots malware
that’s altering its behavior in response
to your breakpoints. What do you do?
What DO you DO?!?!

7

Conclusion:

•  Human stepping through code easy to
detect
– But analyst will hopefully grasp the nature

of the timing check, and work around it
•  IMHO RDTSC less fun than a barrel of

monkeys but more fun than a tube sock
of scorpions

8

Interrupts and Exceptions
•  “Interrupts and exceptions are events that indicate that

a condition exists somewhere in the system, the
processor, or within the currently executing program or
task that requires the attention of a processor.”

•  “When an interrupt is received or an exception is
detected, the currently running procedure or task is
suspended while the processor executes an interrupt or
exception handler. When execution of the handler is
complete, the processor resumes execution of the
interrupted procedure or task.”

•  “The processor receives interrupts from two sources:

–  External (hardware generated) interrupts.
–  Software-generated interrupts.”

Vol 3A, Sect 5.1

9

Difference between Interrupt
and Exception?

•  Exceptions typically indicate error conditions,
whereas interrupts typically indicate events
from external hardware.
–  “Exception - E is for error” ;)

•  Interrupts clear the Interrupt Flag (IF - talked
about later), Exceptions do not.

•  3 categories of exception:
–  Fault - recoverable - pushed EIP points to the

faulting instruction
–  Trap - recoverable - pushed EIP points to the

instruction following the trapping instruction
–  Abort - unrecoverable - may not be able to save EIP

where abort occurred
Vol 3A, Sect 5.5

10

Fault: EIP points at faulting instruction

“Zis is all YOUR fault!”

11

Trap: EIP points at instruction
after the trapping instruction

12

Abort: unrecoverable, may not
be able to save EIP…

EI
P

13

Saving State

•  When it says the current procedure is
suspended, what does it actually mean?

•  Need to save the relevant state for the
current activity, so that the state can be
restored after processing the interrupt

•  The hardware itself saves relatively little
state to the stack in the event of an
interrupt. An interrupt handler on the other
hand may choose to store all of the
registers so that they can be replaced
when the interrupt has been processed,

14

Stack On Interrupt

From Vol. 1

(error code is only there if the
particular interrupt creates one)

15

You couldn’t find your handler’s
stack with both hands

•  A good question (asked by my wife) is:
when there is a privilege change how
does the hardware find the stack for the
interrupt handler in order to push the
saved state onto that stack rather than
that of the interrupted procedure?

•  It consults a structure called the Task
State Segment (TSS) to find the new
SS and ESP it will use.

16

A little bit about “tasks”
•  The Intel documentation often references the notion of a
“task”.

•  Eventually I decided to remove most of the description of how
tasks work, because it is tangential to the more important
stuff, and I anticipate a lack of time.

•  If you’re a conspiracy theorist, you are invited to read Vol 2a,
Section 6 to find out “what Xeno doesn’t want you to
know!”….But then…that’s just what I’d be expecting, isn’t
it?

•  Anyway, the Task State Segment (TSS) is something which
must be used by the OS by virtue of being consulted on
privilege changing interrupts, so we’ll at least talk about that.

•  There’s a dedicated 16 bit Task Register (TR) which holds a
segment selector selecting an entry in the GDT of Task
Segment type. (Load/store task register with LTR, STR
instructions respectivly

•  The task segment points to the Task State Segment, which is
just a large data structure of mostly saved register values.

TSS

17

!descriptor TSS printing

•  I added the following commands to the !
descriptor windbg plugin
–  !descriptor TSS32 <address>
–  !descriptor TSS16 <address>

•  Just reads memory at the given address
and prints out value according to the
structure definition

•  Use with !descriptor GDT <index> to
find the base address of a GDT
descriptor of 16/32 bit TSS type 18

19

Interrupt Descriptor Table (IDT)

•  And array of <= 256 8-byte descriptor entries. 0
through 31 are reserved for architecture-specific
exceptions and interrupts. 32-255 are user defined.

•  While it interacts with segments, you can think of it as
being an array of function pointers, and when
interrupt n is invoked by software or hardware,
execution transfers to the address pointed to by the
nthdescriptor in the table.

20

Meet The Interrupts

21

Meet The Interrupts 2

For lots of details on 0-19, see Vol. 3a Sect. 5.15

The SegFault is a Lie!
•  On *nix systems when you access somewhere you’re not

supposed to, the program will be shut down with the given
reason being “Segmentation Fault”

•  Looking back at the table we see there is no listed
Segmentation Fault.

•  In fact, for most segmentation errors you can get, they will
generate a general protection fault

•  And we know that segmentation isn’t used to protect memory,
so usually if you access invalid memory you’re getting a page
fault.

•  The reality of the SegFault is that it’s a unix Signal, SIGSEGV
(signal segment violation). But signals are an OS level
abstraction, and this “fault” isn’t a x86 fault.

•  (I would welcome anyone digging into a *nix and confirming that
things like page faults and general protection faults get turned
into things like SIGSEGV signals)

22

23

Software-Generated Interrupts
•  INT n - Invoke IDT[n]

–  Important: While you can invoke anything in the IDT, some
interrupts expect an error code. INT does not push any error
code, and therefore a handler may not behave correctly.

–  Interrupts generated in software with the INT n instruction
cannot be masked by the IF flag in the EFLAGS register.
(Talked about later)

•  IRET - returns from an interrupt, popping all the saved
state back into the correct registers

•  INT 3 - The special 0xCC opcode form of this has an
extra caveat that when hardware virtualization is used,
it doesn’t intercept this interrupt like it would do with
others, and just passes it to the OS debug interrupt
handler

•  INTO - Invoke overflow interrupt if the overflow flag
(OF) in EFLAGS is set to 1 (like a conditional INT 4)

•  UD2 - Invoke invalid opcode interrupt (same as INT 6)

24

Lab: TryToRunTryToHide.c
BreakOnThruToTheOtherSide.c

•  Taking a look at what changes and
what doesn’t when jumping from
userspace to kernel via a software
interrupt

•  Showing the kernel stack values being
derived from the TSS

•  Using rootkit hooking technique you’re
not expected to understand yet to
intercept the interrupt ;)

Changed Register Results
(everything else that we were watching was the same except eip obviously)

Userspace Kernel
CS = 0x1B CS = 0x08
SS = 0x23 SS = 0x10
FS = 0x3B FS = 0x30
ESP = 0x12FDDC ESP = 0xF7A2ADCC
EFLAGS:IF = 1 EFLAGS:IF = 0

25

How is the IDT found?
•  There is a specific register which points at the base

(0th entry) of the IDT. The IDT Register is named
IDTR ;)

•  When interrupt/exception occurs, the hardware
automatically
–  consults the IDTR
–  finds the appropriate offset in the IDT
–  pushes the saved state onto the stack
–  changes EIP to the address of the interrupt handler, as read

from the IDT entry (interrupt descriptor).

26

27

IDTR Format

•  The upper 32 bits of the register specify the
linear address where the IDT is stored. The
lower 16 bits specify the size of the table in
bytes.

•  Special instructions used to load a value into
the register or store the value out to memory
–  LIDT - Load 6 bytes from memory into IDTR
–  SIDT - Store 6 bytes of IDTR to memory

•  Structured the same way as the GDT
•  Also, WinDbg displays upper 32 bits as

idtr, and lower parts as idtl.

From Vol 3a.
Figure 2-5

28

IDTR Usage

29

Interrupt Descriptors

•  The descriptors in the IDT describe one of
three gate types
–  Trap Gate
–  Task Gate
–  Interrupt Gate

•  “The only difference between an interrupt gate and a
trap gate is the way the processor handles the IF flag
in the EFLAGS register.“ Discussed later, but from
this you can infer that a Trap Exception isn’t related
to a Trap Gate. Since there’s the difference between
where EIP points for trap vs interrupt exceptions.

•  Gates are used in the IDT to facilitate control
flow transfers between privilege levels

Task Gate Descriptor

30

Descriptors not in use should have P = 0

As I said before, I’m not really going to talk about
tasks. But as you can see their gate descriptors
are booooorrrrriiiinnnggggg!

31

Interrupt Gate Descriptor
Note that the two halves

of the offset form a
32 bit address.

Descriptors not in use should have P = 0

32

Trap Gate Descriptor
Note that the two halves

of the offset form a
32 bit address

Descriptors not in use should have P = 0

Blink and you’ll miss it…if you’re unable to see red ovals after
having blinked. The format is the same except for one bit.

Descriptor Descriptions
•  The DPL is again the Descriptor Privilege Level. And

it is only checked when a descriptor is accessed by a
software interrupt, in which case it is only allowed if
CPL <= DPL (ignored on hardware interrupts)

•  Note that the descriptor specifies a segment selector
and 32 bit address. Why that looks like a “logical
address” aka “far pointer” to me!

•  D flag specifies whether you’re jumping into a 16 or
32 bit segment.

•  P (Present) flag

33

34

IDT Relation to Segments

35

Lab: Pearly Gates

•  We can take a look at what types of
gates are used in the IDT by using this
new command I added to the descriptor
plugin:

•  !descriptor IDT
•  !descriptor IDT_FULL
•  !descriptor DUMP_IDT_TYPES
•  Can also use the built in !idt and !idt –a

commands

36

Interrupt Masking

•  It is sometimes useful to disable some
interrupts. This is called “masking” the
interrupt.

•  The Interrupt Flag (IF) in the EFLAGS register
is cleared automatically whenever an interrupt
occurs through an interrupt gate (but not a
trap gate).

•  Maskable interrupts can be manually masked
by clearing IF. IF can be cleared with the CLI
instruction, or set with STI (both ring-0-only
instructions). But only if you have sufficient
privileges (talked about later)

37

Interrupt Masking Exceptions

•  The IF does not mask the explicit
invocation of an interrupt with the INT
instruction

•  The IF does not mask a Non Maskable
Interrupt - IDT[2] (duh ;))

38

Red Pill

•  Joanna Rutkowska, 2004 - “Red Pill... or how
to detect VMM using (almost) one CPU
instruction”
http://www.invisiblethings.org/papers/redpill.html

•  Using SIDT (Store Interrupt Descriptor Table
Register) instruction to profile the current
value in the IDTR

•  She had found that the most significant byte
of the IDTR had a predictable value in
VMWare 4 and VirtualPC, which was different
from what it was in an unvirtualized system

Lab: VerboseRedPill.c

•  As opposed to:
int swallow_redpill () {
 unsigned char m[2+4], rpill[] = "\x0f\x01\x0d\x00\x00\x00\x00\xc3";
 ((unsigned)&rpill[3]) = (unsigned)m;
 ((void(*)())&rpill)();
 return (m[5]>0xd0) ? 1 : 0;
}

39

40

Red Pill 2

•  The fundamental problem is that while LIDT is a
privileged instruction (requires Ring 0), SIDT is not
(and probably should be).

•  For more examples of why x86 as a platform is not
meant to be transparently virtualized see these:
–  Analysis of the Intel Pentium’s Ability to Support a Secure Virtual

Machine Monitor http://www.cs.nps.navy.mil/people/faculty/irvine/
publications/2000/VMM-usenix00-0611.pdf

–  Compatibility is Not Transparency: VMM Detection Myths and
Realities http://www.stanford.edu/~talg/papers/HOTOS07/vmm-
detection-hotos07.pdf

•  Implication is that malware can detect if it’s being
virtualized…but…as more hosts are virtualized,
there’s disincentive for malware to not run in
virtualized environments.

Ironic Table

41

42

Stray Instructions Adopted
Along The Way

•  SIDT/LIDT –Store/Load IDTR
•  STI/CLI – Set/Clear Interrupt Flag(IF)
•  STR/LTR – Load/Store Task Register (TR)
•  INT n – Software Interrupt, invoke handler n
•  UD2 – Undefined Instruction Interrupt
•  INTO – Overflow Interrupt
•  0xCC form of INT 3 – Breakpoint Interrupt
•  IRET – Return from interrupt

