
Intermediate x86
Part 2

Xeno Kovah – 2010
xkovah at gmail

All materials are licensed under a Creative
Commons “Share Alike” license.

•  http://creativecommons.org/licenses/by-sa/3.0/

2

3

Paging
•  Previously we discussed how segmentation translates a

logical address (segment selector + offset) into a 32 bit
linear address.

•  When paging is disabled, linear addresses map 1:1 to
physical addresses.

•  When paging is enabled, a linear address must be
translated to determine the physical address it
corresponds to.

•  It’s called “paging” because physical memory is divided
into fixed size chunks called pages.

•  The analogy is to books in a library. When you need to
find some information first you go to the library where you
look up the relevant book, then you select the book and
look up a specific page, from there you maybe look for a
specific specific sentence …or “word”? ;)

•  The internets ruined the analogy!

4

Notes and Terminology

•  All of the figures or references to the manual
in this section refer to the Nov 2008 manual
(available in the class materials). This is
because I think the manuals <= 2008
organized and presented much clearer than
>= 2009 manuals.

•  When I refer to a “frame” it means “a page-
sized chunk of physical memory”

•  When paging is enabled, a “linear address”
is the same thing as a “virtual memory
address” or “virtual address”

5

And now you know…the rest
of the story. Good day.

The terrifying truth revealed!
AHHHHHHHH!!!

(Nah, it’s not so bad :))

6

Virtual Memory
•  When paging is enabled, the 32 bit linear address

space can be mapped to a physical address space
less than 32 bits. Whippersnappers need to
understand that for most of history it was cost-
prohibitive to have 4GB of RAM.

•  Paging makes memory access virtual in that no
longer does the linear address correspond to the
exact same physical address. Low addresses can
map to high addresses, or low addresses, or no
addresses.

•  Remember I said I will use “linear address” and
“virtual address” interchangeably

7

Ways to translate from linear to
physical memory

•  Traditional
–  32 bit linear address to 32 bit physical address

space, 4KB pages
–  32 bit linear address to 32 bit physical address

space, 4MB pages
•  Physical Address Extension (PAE) allows you

to address 64GB of RAM (2^36 bytes)
–  32 bit linear address to 36 bit physical address

space, 4KB pages
–  32 bit linear address to 36 bit physical address

space, 2MB pages
•  Page Size Extension (PSE-36) is another way

to address 2^36 bytes, but we ignore it
because I don’t know that anyone uses it

8

Paging and the Control Registers
(“<Anyone> and The Control Registers” could make a good band name)

•  There are 5 Control Registers (CR0-CR4) which are
used for paging control as well as enabling/disabling
other features.

•  CR0 has the PG bit which if set to 1 enables paging.
It also contains the PE bit which if set to 1 enables
protected mode (PG requires PE being set)

•  CR1 is reserved and not used for anything (lame)
•  CR2 stores the linear address that caused a page

fault (discussed later)

9

Paging and the Control Registers 2
•  CR3 pointer to page directory. AKA Page-Directory

Base Register (PDBR).
•  CR4

–  PAE - Physical Address Extension - enable/disable the
ability to address 2^36 bytes of physical memory (64 GB)
instead of just 2^32

–  PSE - Page Size Extentions - Enable/disable the use of
large (4MB or 2MB) pages (Don’t confuse with that PSE-36
thing I told you about a little while ago.)

–  PGE - Page Global Enable - Enable/disable global page
feature.

•  We’ll mention all of the CR4 flags of interest again
when we get to them later.

10

Accessing Control Registers

•  Accessed with their own MOV
instructions (only allowed from ring 0)
– MOV CR, r32
– MOV r32, CR

•  Different opcodes than normal MOVs,
no fancy r/m32 form. Only register to
register

11

32bit to 32 bit, 4KB pages

• This is the process by which linear addresses
are translated to physical addresses.
• The OS sets the tables up, and the hardware
automatically traverses them whenever you try
to access a linear (virtual) address.

Library
Book Page

Location in
the page

The nerd who
always knows

where the
library is.
e.g. me ;)

12

Stop! Break it down!
What’s going on here?:
CR3

•  We start at CR3, which always should point to the current
process’ page directory
–  That’s right, I said current process’. As in, each process can get

it’s own page directory, and thus it’s own view of memory.
•  Note the * text in the picture says the address is aligned on a

4KB boundary. This is because the address is actually only
specified in the upper 20 bits of CR3, and then the bottom 12
bits (2^12 = 4KB) of the address are assumed to be 0. (That
leaves the bottom 12 bits of CR3 available for misc usage, and
indeed there are a couple flags for caching which we can
ignore)

•  Annoying part: The value in CR3 is a physical address

13

What’s going on here?:
Page Directory Entry

•  As we saw before (cue backtrack), the most significant 10 bits of the
linear address are used as an index into the Page Directory, to point at
a Page Directory Entry (PDE). The PDE in turn specifies the physical
address of a Page Table.

•  The PDE has a special format we’ll talk about in a bit.

14

What’s going on here?:
Page Table Entry

•  The middle 10 bits of the linear address are used as an index into the
Page Table, to point at a Page Table Entry (PTE). The PTE in turn
specifies the physical address of a Page.

•  The PTE has a special format (very similar to the PDE) we’ll talk about
in a bit.

15

What’s going on here?:
Page

•  Once you have a PTE pointing a the physical address for a
page of memory, the last 12 bits of the linear address are used
as an offset into that page. It is this location which ultimately
represents the physical address where information is stored
whenever the virtual address is utilized.

•  There’s nothing particularly special about any given page.
They’re just chunks of RAM (4KB big in this case) being
organized by the OS. Note that the OS needs to keep track of
which physical pages are currently being used.

•  That’s where “The Other Virtual Memory” comes into play. If
the system runs out of physical memory, it can start using
storage on the hard drive as fake RAM aka virtual memory.
–  Accessing the HD is about 100000 times slower than accessing

RAM

16

32bit to 32 bit, 4KB pages

• This is the process by which linear addresses
are translated to physical addresses.
• The OS sets the tables up, and the hardware
automatically traverses them whenever you try
to access a linear (virtual) address.

Library
Book Page

Location in
the page

The nerd who
always knows

where the
library is.
e.g. me ;)

Let’s
drill

down on
this

17

Page Directory Entry (PDE) Fields

•  P (Present) Flag - If set to 1 the pointed to page table is present
in physical memory. If 0, either the linear address space is
empty (the default starting state) or the memory has been paged
to file. If 0, bits 1-31 are available for software-defined purposes.

•  R/W (Read/Write) Flag - If 1, the pages pointed to by the page
directory are read/write. If 0, read-only. (This flag overrides the
equivalent flag in the PTE).s

•  U/S (User/Supervisor) Flag - If 1, pages can be accessed by
CPL == 3 (User mode), if 0, pages can only be access by CPL <
3 (Supervisor mode).

•  U/S and R/W flags interact with the CR0.WP (Write Protect)
Flag in the following way: If CR0.WP == 1, even supervisor
mode code cannot write to a read-only page. If CR0.WP == 0,
supervisor code can write wherever it wants.

Bold are the more important fields

18

Page permissions table

19

Page Directory Entry (PDE) Fields 2

•  Page-level write-through (PWT) flag & Page-level cache disable (PCD) flag -
Control caching aspects, but we’re not getting into data caching in this class.

•  A (Accessed) Flag - If 1, the page table pointed to has been accessed (read/
written to). Generally initialized to 0 by memory management software (i.e. not
automatically set by hardware on access.)

•  AVL & Avail - Bits available for memory management software use.
•  PS (Page Size) flag - Set to 0 for 4KB pages (therefore PDE points to PTE).

Set to 1 for large page (4 MB), and the PDE points directly at a large page. For
the case we’re covering right now (32bit-32bit-4KB pages) it MUST be set to
0.

•  G (Global) Flag - Translations between a linear and physical address is
cached in the Translation Lookaside Buffer (TLB - talked about later). If set to
1, this cached translation will not be flushed if CR3 is changed to point at a
different Page Directory. If set to 0, this translation will be flushed from the TLB
as normal, when CR3 changes. We’ll revisit this later.

•  Page-Table Base Address - Upper 20 bits of the physical address for the
base of a Page Table. The bottom 12 bits of the physical address are assumed
to be 0s. (I.e. the page table must start on a 12-bit (4KB) aligned address).

Bold are the more important fields

20

Page Table Entry (PTE) Fields

•  P (Present) Flag - If set to 1 the pointed to page is present in physical
memory. If 0, either the linear address space is empty (the default
starting state) or the memory has been paged to file. If 0, bits 1-31 are
available for software-defined purposes.

•  R/W (Read/Write) Flag - If 1, the pages pointed to are read/write. If 0,
read-only. (Still subject to the Page Directory permissions, per table
4-3.)

•  U/S (User/Supervisor) Flag - If 1, pages can be accessed by CPL ==
3 (User mode), if 0, pages can only be access by CPL < 3 (Supervisor
mode).

•  U/S and R/W flags interact with the CR0.WP (Write Protect) Flag in the
following way: If CR0.WP == 1, even supervisor mode code cannot
write to a read-only page. If CR0.WP == 0, supervisor code can write
wherever it wants.

•  All these flags are used exactly the same way as in the PDE!

Bold are the more important fields

21

Page Table Entry (PTE) Fields 2

•  Page-level write-through (PWT) flag & Page-level cache disable (PCD) flag -
Control caching aspects, but we’re not getting into caching in this class.

•  A (Accessed) Flag - If 1, the page pointed to has been accessed (read/written
to). Generally initialized to 0 by memory management software (i.e. not
automatically set by hardware on access.)
D (Dirty) Flag - If 1, the page pointed to has been written to. Generally
initialized to 0 by memory management software (i.e. not automatically set by
hardware on access.)

•  PAT (Page Attribute Table) Flag - Extends PWT and PCD capabilities, and
thus we ignore it in this class.

•  Avail - Bits available for memory management software use.
•  G (Global) Flag - Translations between a linear and physical address is

cached in the Translation Lookaside Buffer (TLB - talked about later). If set to
1, this cached translation will not be flushed if CR3 is changed to point at a
different Page Directory. If set to 0, this translation will be flushed from the TLB
as normal, when CR3 changes. We’ll revisit this later.

•  Page Base Address - Upper 20 bits of the physical address for the base of a
Page. The bottom 12 bits of the physical address are assumed to be 0s. (I.e.
the Page must start on a 12-bit (4KB) aligned address).

Lab: WinDbg & !pte command
•  !pte takes a VA and prints out the page

directory and page table information
•  To start with the simple case, we want

to force our system to boot in non PAE
mode (PAE is talked about later). So
reboot the system and select the “NO
PAE + DEBUG” entry at the bootloader
screen

•  We will talk about what we’re going to
achieve while it’s rebooting

22

Getting concrete (overshoes)

•  There is no fixed way that virtual memory has
to be mapped to physical memory. Different
OSes use different conventions for how they
organize their virtual address space, some
have the kernel at low addresses, some have
it at high. Some map kernel memory direct to
physical memory, some don’t. In all cases,
certain areas often are used for certain things
simply by having all the code follow a specific
convention.

23

Windows PDE/PTE organization
•  By convention, the Page Directory (physical

memory pointed to by CR3) is mapped to
0xC0300000. To find the PDE for a given
Virtual Address (VA), you compute:
–  0xC0300000 + (upper 10 bits of VA) * sizeof(PDE)
–  sizeof(PDE) = 4 bytes

•  By convention, the Page Tables will be
mapped into memory starting at 0xC0000000.
To find the PTE for a given VA, you compute:
–  0xC0000000 + (upper 10 bits of VA) *

PAGE_SIZE + (middle 10 bits of VA) * sizeof(PTE)
–  PAGE_SIZE = 0x1000 (4096), sizeof(PTE) = 4

•  http://msdn.microsoft.com/en-us/library/cc267483.aspx 24

Example by hand:
•  GDT Base = 0x8003f000
•  Binary = 1000 0000 0000 0011 1111 0000 0000 0000
•  Grouping = (1000 0000 00)(00 0011 1111) (0000 0000 0000)
•  Upper 10 bits = 0x200, Middle 10 bits = 0x3F, Bottom 12 = 0
•  PDE = 0xC0300000 + 0x200 * 4 = 0xC0300800

–  If you read the 4 bytes at 0xC0300800 you will get the PDE which will have all
the bits which were previously specified in those big tables

•  PTE = 0xC0000000 + 0x200 * 0x1000 + 0x3F * 4 = 0xC02000FC
–  If you read the 4 bytes at 0xC02000FC you will get the PTE which will have all

the bits which were previously specified in those big tables

25

How do you implement a convention?

26

0xC0300000

0x300 0x300

27

Not presently here
•  Both the PDE and PTE have the 0th bit as the Present Bit.
•  What happens a program attempts to access memory, and during

translation between the linear and physical memory the hardware
comes across a PDE or PTE with the present bit set to 0?

•  It invokes a Page Fault #PF (IDT[14]). The OS-supplied page fault
handler then determines whether it can recover from the fault.

•  When a Page Fault occurs, the address which was being attempted
to be accessed is automatically put into the CR2 register.

•  Some causes of page faults
–  Page is paged out (“swapped”) to disk (recoverable)

•  FYI, page file organization is OS-specific
–  Automatic stack growth (recoverable)
–  Attempts to write to read-only memory (recoverable if memory is intended to be

copy-on-write)
–  No valid linear-to-physical translation (unrecoverable)
–  User code accessing memory marked as supervisor (unrecoverable*) (* = see

slide notes)

28

32 bit to 32 bit 4MB pages

Library Really long
scroll ;)

29

32-32-4MB PDE
•  Fields except for page base address interpreted the same way. (Since

you can see the D and PAT bits, you can see that it’s kind of
combining fields from both the PDE and PTE)

•  Most significant 10 bits specify 4MB-aligned page start (other bits
assumed to be 0)

•  Page Size (PS) Flag - MUST be set to 1 to have 4MB page, and for the
1 to mean anything, the CR4 PSE (Page Size Extensions) flag must be
set to 1.

30

Why would I want ginormous
pages?

•  From the Nov 2008 edition of Intel Vol 3a, section 3.7.3:
•  “When the PSE flag in CR4 is set, both 4-MByte pages and

page tables for 4-KByte pages can be accessed from the same
page directory. If the PSE flag is clear, only page tables for 4-
KByte pages can be accessed (regardless of the setting of the
PS flag in a page-directory entry).”

•  “A typical example of mixing 4-KByte and 4-MByte pages is to
place the operating system or executive’s kernel in a large
page to reduce TLB misses and thus improve overall system
performance.”

•  “The processor maintains 4-MByte page entries and 4-KByte
page entries in separate TLBs. So, placing often used code
such as the kernel in a large page, frees up 4-KByte-page TLB
entries for application programs and tasks.”

•  OK, I can’t defer it any longer, let’s look at the TLB.

31

Translation Lookaside Buffer (TLB)
•  An in-CPU cache which stores translations between linear

addresses and physical pages.
•  The idea being that memory accesses will be faster when the

hardware does not have to walk from CR3 to the page directory
and possibly to the page table.

•  By caching a map which describes which linear page
corresponds to which physical page, the hardware can just use
the least significant x bits which specifies the offset into the
page.
–  (where x depends on what type of paging layout you’re using - in

canonical 4KB pages x = 12, in 4MB pages x = 22)
•  This is similar to the way that the “hidden” part of a segment

register stores the information from a segment descriptor, so
that it doesn’t have to go back and walk the GDT. Except it’s
more complicated in that the TLB is a real cache and follows
layout like other types of caches. (4-way set associative if you
know what that means, if not, it’s quite alright.)

32

TLB as a grey box
(not actually how it looks, just to give you something to visualize)

Virtual
Page
Number

Physical
Frame
Number

0x80401 0x10001
0x4F007 0x2BAD1
0xFEEEE 0x00400
… …

32bit linear address

Virtual Page Offset
0x4F007 0x700

Physical Frames

0x2BAD1000

0x2BAD0000

Result: Data stored at virtual memory address
0x4F007700 is stored at physical memory address
0x2BAD1700 without consulting the page tables

0x2BAD1700
+

TLB

0x2BAD2000

0x2BAD3000

33

More about the TLB
•  Whenever CR3 is set to a new value, all TLB entries

which are not marked as global are flushed. (Only
ring 0 can mov a value to CR3.)

•  Ring 0 code can also use the INVLPG instruction to
invalidate the TLB cache entry for a specified virtual
memory address.

•  There are actually multiple TLBs. Generally there are
four:
–  Data TLBs: one for caching 4KB translations, one for large

(2/4MB) pages
–  Instruction TLBs: one for 4KB, one for large (2/4MB) pages

•  Number of entries in the cache differs between chip
microarchitectures and revisions. Example for Core 2
Duo (T7400 - Merom) in my MacBook Pro:
–  DTLBs - 256 4KB entries, 32 4MB entries
–  ITLBs - 128 4KB entries, 8 4MB entries

34

Shadow Walker Rootkit
•  https://media.defcon.org/dc-13/video/2005_Defcon_V81-

Sherri_Sparks,_Jamie_Butler-Shadow_Walker.m4v
•  http://www.phrack.com/issues.html?issue=63&id=8
•  TLB manipulation for fun and profit – hides a page of memory

from a memory scanner
•  Exploits the fact that there can be a different translation for the

same virtual memory address stored in the ITLB vs the DTLB
•  In order to allow itself to execute normally but fool a scanner, it

needs to differentiate execute accesses (caused by itself), from
read/write accesses (caused by a scanner). In order to do this, it
sets the present bit to 0 for the page it is executing on, and then
replaces the page fault handler(PFH).

•  The modified PFH then examines the EIP which was pushed
with the fault state. If the EIP is within the hidden page, then it is
execution by the rootkit, and the page fault handler should map
the virtual memory to the correct frame (thus filling the ITLB). If
the EIP is anywhere else, then it is some outside entity and the
page should be mapped to any random frame (thus filling the
DTLB.)

35

ASCII Art of Dooooom!

36

Defeating Shadow Walker
•  Check the IDT page fault handler entry to ensure it

has not been pointed at a different location than the
expected OS page fault handler.

•  Integrity check the memory for the legitimate page
fault handler to ensure it isn’t subject to an inline
hook.

•  Manually flush the TLB before scanning memory.
•  Map each physical page of memory to a target virtual

memory page and read the page looking for whatever
you were looking for in the first place.

•  Profile paging performance.

37

Physical Address Extention (PAE)

•  A hardware-supported way to address more than
4GB of RAM by just rewriting your memory manager
(as opposed to a full system rewrite for 64bit support)

•  Windows uses a different kernel when PAE is being
used - ntkrnlpa.exe (as opposed to ntoskrnl.exe)
–  If you have enabled DEP (Data Execution Prevention) on a

Windows system, it requires PAE, and thus it will load this
alternate kernel.

–  DEP is enabled (for system services) by default post XPSP2,
therefore your OS is probably running in PAE mode most of
the time.

38

PAE - 32 bit to 36 bit, 4KB
pages

39

Do the math

•  Uhhh…Doesn’t look like traversing through
those tables lets a single process access 64GB
of memory…

•  That’s right! You didn’t really think there was
going to be a one-to-one mapping from a small
set (32 bit linear addresses) to a big set (36 bit
physical addresses) did you? (I did before I paid
attention ;))

•  It doesn’t really help an individual process that
much, it just helps out the system as a whole,
because the memory manager has a larger list of
free frames that it can pull from, so that it doesn’t
have to page stuff out as often due to lack of
spare space.

40

Do the math 2

•  Then what was the point of changing the
page table layout?

•  1. If the OS wanted to allow processes to
access more than 4GB of memory, it could
support swapping out entries in the Page
Directory Pointer Table
–  This would avoid changing CR3 and the

consequent invalidating of TLB entries
•  2. There weren’t 4 extra bits available in the

existing PDEs and PTEs.
•  3. Room to support new features (like NX/XD

talked about later.)

41

PAE Entry Formats
4 bits

NOTE!
Bit 63 is the
XD bit, it’s
just not
shown on
these old
pictures
(and like I
said I dislike
the new
format)

X
D

X
D

X
D

Windows PAE PDE/PTE organization
•  By convention, the Page Directory (physical

memory pointed to by CR3) is mapped to
0xC0600000. To find the PDE for a given
Virtual Address (VA), you compute:
–  0xC0600000 + (upper 11 bits of VA) * sizeof(PDE)
–  sizeof(PDE) = 8 bytes
–  NOTE: This means Windows is not even using the

Page Directory Pointer Table!
•  By convention, the Page Tables will be

mapped into memory starting at 0xC0000000.
To find the PTE for a given VA, you compute:
–  0xC0000000 + (upper 11 bits of VA) *

PAGE_SIZE + (middle 9 bits of VA) * sizeof(PTE)
–  PAGE_SIZE = 0x1000 (4096), sizeof(PTE) = 8

•  http://msdn.microsoft.com/en-us/library/cc267483.aspx

42

Example by hand:
•  GDT Base = 0x8003f000
•  Binary = 1000 0000 0000 0011 1111 0000 0000 0000
•  Grouping = (1000 0000 000)(0 0011 1111) (0000 0000 0000)
•  Upper 11 bits = 0x400, Middle 9 bits = 0x3F, Bottom 12 = 0
•  PDE = 0xC0600000 + 0x400 * 8 = 0xC0602000

–  If you read the 8 bytes at 0xC0601000 you will get the PDE which will have all
the bits which were previously specified in those big tables

•  PTE = 0xC0000000 + 0x400 * 0x1000 + 0x3F * 8 = 0xC04001F8
–  If you read the 8 bytes at 0xC02000FC you will get the PTE which will have all

the bits which were previously specified in those big tables

43

44

PAE - 32 bit to 36 bit, 2MB pages

•  Left as an exercise to the reader ;)
•  (used to map ntkrnlpa.exe pages)

45

NX/XD Bit
•  Originally the NX (No Execute) bit was an AMD

extension. Intel picked it up as well, as the XD
(eXecute Disable) bit. It’s more commonly
referred to as the NX bit though.

•  The bit implements a “W^X” (write XOR execute)
policy whereby memory can either be writable or
executable but not both.

•  Remember that segmentation has a way of
preventing memory from being executable, but
everyone uses page level protections rather than
segmentation, so this became necessary to
prevent code from executing in ostensibly-data-
only memory regions such as stack or heap.

•  Intended for preventing some exploits.

46

NX/XD Bit 2
•  Any pages which have a PTE, PDE, or PDPTE with

the XD = 1, are non-executable (higher granularity
specifications of XD override finer granularity).

•  Attempts to execute from non-executable pages
results in a page fault

•  MS refers to the utilization of XD as Data Execution
Prevention (DEP) or “Hardware DEP”. “Software
DEP” refers to MS’s Structured Exception Handler
sanity checking (“SafeSEH”) and has nothing to do
with XD.

•  It’s all well and good until someone uses a different
type of exploit to turn off DEP ;)
http://www.uninformed.org/?v=2&a=4 (But I’ll let the exploit
class talk about that)

Lab: Investigating NX bits
•  I couldn’t find any pages in VMWare which had NX

active. Fail.
•  I suspect VMWare Server 1.x doesn’t support

exporting the NX bit to the VM
•  Here’s some “proof” from someone else’s site that if

XD is enabled, you should see the MSBit set to 1
•  kd> !pte 0xFFDF0400

VA ffdf0400
PDE at 00000000C0603FF0 PTE at 00000000C07FEF80
contains 0000000000127063 contains 0000000000152163
pfn 127 ---DA--KWEV pfn 152 -G-DA—KWEV <- Executable bit is set
kd> !pte 0x7FFE0400
VA 7ffe0400
PDE at 00000000C0601FF8 PTE at 00000000C03FFF00
contains 000000003D283867 contains 8000000000152005
pfn 3d283 ---DA--UWEV pfn 152 -------UR-V <- Executable bit is not set

•  From
http://www.harmonysecurity.com/blog/2009/11/implementing-win32-
kernel-shellcode.html 47

48

The ol’ switcharoo
•  In a typical protected mode OS, processes have isolated

(“protected” ;)) memory spaces, and threads within the same
process share the memory space.

•  But how are these memory spaces achieved? Clearly not
through segmentation.

•  When the kernel is context switching between processes it
makes sure each gets a CR3 value which points to a different
Page Directory (or Page Directory Pointer Table in PAE.)

•  And the kernel and all modules which operate in the kernel all
have the same view of memory, because they’re all using
the same CR3 value.

•  This is why if someone can load a kernel module/driver, they
then have free reign to scribble over the kernel or other
modules. BUT, because the CR3 for userspace processes
will not be the same as for the kernel, it actually takes some
Legwork for an attacker (or defender) in kernel space to
influence the memory of userspace processes.

49

Sharing memory
•  What about when you don’t want there to be strict

isolation between memory spaces?
•  Shared Libraries - The whole point of Dynamic Link

Libraries (DLLs - Windows) and Shared Objects
(*nix), is that you don’t want to build a library into
each executable which uses it, because then you
have multiple copies of the exact same code stored in
physical memory, which wasteful. Therefore it is
desirable to have the library stand alone and map
that single physical memory region corresponding to
the library into multiple processes’ virtual address
spaces.
–  For reasons discussed in a future class it is desirable, but

not required, to map the library into the same virtual address
range in all processes. Not required because you can’t
prevent the loading of a necessary library just because some
other jerk library already took its desired virtual memory
location.

50

Sharing Memory 2

•  Inter-Process Communication (IPC) - If two
processes need to send large amounts of data
between each other, it could be achieved by simply
mapping a fixed size chunk of physical memory into
their virtual memory spaces, and then having the
processes agree on a communications protocol.
–  Remember though that userspace processes can’t affect

page tables directly, there must be some OS-supported way
which they must leverage. E.g. VirtualAlloc()/VirtualProtect()
on Windows or mmap()/mprotect() on *nix. (Or some more
user-friendly IPC mechanism.)

–  A separate technology, Direct Memory Access - DMA,
operates on the same premise that having hardware devices
talk to each other through chunks of RAM can be quite fast.
“DMA: the Fire in your Wire” - Max Dornseif

51

Memory Map Process A
Virtual Memory

Process B
Virtual Memory

Physical Memory

Shared Library
Chunk 1

Shared Library
Chunk 2

Shared Library
Chunk 1

Shared Library
Chunk 2

Process A
Code

Process A
Data

Process B
Data

Process B
Code

Shared Library
Chunk 1

Shared Library
Chunk 2

Process A
Code

Process A
Code 2

Process A
Data

Process A
Code 2

Process B
Data

Process B
Code

52

Memory Sharing
•  Through the eyes of paging structures
•  (NOTE: I doctored this image slightly, also, pretend

task is the same as process)

53

Misc Instructions Picked Up
Along The Way

•  MOV CR, r32 – (CR = One of the
Control Registers)

•  MOV r32, CR – (CR = One of the
Control Registers)

•  INVLPG – Invalidate page entry in TLB

