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Paging 
•  Previously we discussed how segmentation translates a 

logical address (segment selector + offset) into a 32 bit 
linear address. 

•  When paging is disabled, linear addresses map 1:1 to 
physical addresses. 

•  When paging is enabled, a linear address must be 
translated to determine the physical address it 
corresponds to. 

•  It’s called “paging” because physical memory is divided 
into fixed size chunks called pages. 

•  The analogy is to books in a library. When you need to 
find some information first you go to the library where you 
look up the relevant book, then you select the book and 
look up a specific page, from there you maybe look for a 
specific specific sentence …or “word”? ;) 

•  The internets ruined the analogy! 
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Notes and Terminology 

•  All of the figures or references to the manual 
in this section refer to the Nov 2008 manual 
(available in the class materials). This is 
because I think the manuals <= 2008 
organized and presented much clearer than 
>= 2009 manuals. 

•  When I refer to a “frame” it means “a page-
sized chunk of physical memory” 

•  When paging is enabled, a “linear address” 
is the same thing as a “virtual memory 
address” or “virtual address” 
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And now you know…the rest 
of the story. Good day. 

The terrifying truth revealed! 
AHHHHHHHH!!! 

(Nah, it’s not so bad :)) 
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Virtual Memory 
•  When paging is enabled, the 32 bit linear address 

space can be mapped to a physical address space 
less than 32 bits. Whippersnappers need to 
understand that for most of history it was cost-
prohibitive to have 4GB of RAM. 

•  Paging makes memory access virtual in that no 
longer does the linear address correspond to the 
exact same physical address. Low addresses can 
map to high addresses, or low addresses, or no 
addresses. 

•  Remember I said I will use “linear address” and 
“virtual address” interchangeably 
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Ways to translate from linear to 
physical memory 

•  Traditional 
–  32 bit linear address to 32 bit physical address 

space, 4KB pages 
–  32 bit linear address to 32 bit physical address 

space, 4MB pages 
•  Physical Address Extension (PAE) allows you 

to address 64GB of RAM (2^36 bytes) 
–  32 bit linear address to 36 bit physical address 

space, 4KB pages 
–  32 bit linear address to 36 bit physical address 

space, 2MB pages 
•  Page Size Extension (PSE-36) is another way 

to address 2^36 bytes, but we ignore it 
because I don’t know that anyone uses it 
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Paging and the Control Registers 
(“<Anyone> and The Control Registers” could make a good band name) 

•  There are 5 Control Registers (CR0-CR4) which are 
used for paging control as well as enabling/disabling 
other features. 

•  CR0 has the PG bit which if set to 1 enables paging. 
It also contains the PE bit which if set to 1 enables 
protected mode (PG requires PE being set) 

•  CR1 is reserved and not used for anything (lame) 
•  CR2 stores the linear address that caused a page 

fault (discussed later) 
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Paging and the Control Registers 2 
•  CR3 pointer to page directory. AKA Page-Directory 

Base Register (PDBR). 
•  CR4 

–  PAE - Physical Address Extension - enable/disable the 
ability to address 2^36 bytes of physical memory (64 GB) 
instead of just 2^32 

–  PSE - Page Size Extentions - Enable/disable the use of 
large (4MB or 2MB) pages (Don’t confuse with that PSE-36 
thing I told you about a little while ago.) 

–  PGE - Page Global Enable - Enable/disable global page 
feature. 

•  We’ll mention all of the CR4 flags of interest again 
when we get to them later. 
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Accessing Control Registers 

•  Accessed with their own MOV 
instructions (only allowed from ring 0) 
– MOV CR, r32 
– MOV r32, CR 

•  Different opcodes than normal MOVs, 
no fancy r/m32 form. Only register to 
register 
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32bit to 32 bit, 4KB pages 

• This is the process by which linear addresses 
are translated to physical addresses. 
• The OS sets the tables up, and the hardware  
automatically traverses them whenever you  try 
to access a linear (virtual) address. 

Library 
Book Page 

Location in  
the page 

The nerd who 
always knows 

where the 
library is. 
e.g. me ;) 
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Stop! Break it down! 
What’s going on here?: 
CR3 

•  We start at CR3, which always should point to the current 
process’ page directory 
–  That’s right, I said current process’. As in, each process can get 

it’s own page directory, and thus it’s own view of memory. 
•  Note the * text in the picture says the address is aligned on a 

4KB boundary. This is because the address is actually only 
specified in the upper 20 bits of CR3, and then the bottom 12 
bits (2^12 = 4KB) of the address are assumed to be 0. (That 
leaves the bottom 12 bits of CR3 available for misc usage, and 
indeed there are a couple flags for caching which we can 
ignore) 

•  Annoying part: The value in CR3 is a physical address 
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What’s going on here?: 
Page Directory Entry 

•  As we saw before (cue backtrack), the most significant 10 bits of the 
linear address are used as an index into the Page Directory, to point at 
a Page Directory Entry (PDE). The PDE in turn specifies the physical 
address of a Page Table. 

•  The PDE has a special format we’ll talk about in a bit. 
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What’s going on here?: 
Page Table Entry 

•  The middle 10 bits of the linear address are used as an index into the 
Page Table, to point at a Page Table Entry (PTE). The PTE in turn 
specifies the physical address of a Page. 

•  The PTE has a special format (very similar to the PDE) we’ll talk about 
in a bit. 
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What’s going on here?: 
Page 

•  Once you have a PTE pointing a the physical address for a 
page of memory, the last 12 bits of the linear address are used 
as an offset into that page. It is this location which ultimately 
represents the physical address where information is stored 
whenever the virtual address is utilized. 

•  There’s nothing particularly special about any given page. 
They’re just chunks of RAM (4KB big in this case) being 
organized by the OS. Note that the OS needs to keep track of 
which physical pages are currently being used. 

•  That’s where “The Other Virtual Memory” comes into play. If 
the system runs out of physical memory, it can start using 
storage on the hard drive as fake RAM aka virtual memory. 
–  Accessing the HD is about 100000 times slower than accessing 

RAM 
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32bit to 32 bit, 4KB pages 

• This is the process by which linear addresses 
are translated to physical addresses. 
• The OS sets the tables up, and the hardware  
automatically traverses them whenever you  try 
to access a linear (virtual) address. 

Library 
Book Page 

Location in  
the page 

The nerd who 
always knows 

where the 
library is. 
e.g. me ;) 

Let’s 
drill 

down on 
this 



17 

Page Directory Entry (PDE) Fields 

•  P (Present) Flag - If set to 1 the pointed to page table is present 
in physical memory. If 0, either the linear address space is 
empty (the default starting state) or the memory has been paged 
to file. If 0, bits 1-31 are available for software-defined purposes. 

•  R/W (Read/Write) Flag - If 1, the pages pointed to by the page 
directory are read/write. If 0, read-only. (This flag overrides the 
equivalent flag in the PTE).s 

•  U/S (User/Supervisor) Flag - If 1, pages can be accessed by 
CPL == 3 (User mode), if 0, pages can only be access by CPL < 
3 (Supervisor mode).  

•  U/S and R/W flags interact with the CR0.WP (Write Protect) 
Flag in the following way: If CR0.WP == 1, even supervisor 
mode code cannot write to a read-only page. If CR0.WP == 0, 
supervisor code can write wherever it wants. 

Bold are the more important fields 
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Page permissions table 
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Page Directory Entry (PDE) Fields 2 

•  Page-level write-through (PWT) flag & Page-level cache disable (PCD) flag - 
Control caching aspects, but we’re not getting into data caching in this class. 

•  A (Accessed) Flag - If 1, the page table pointed to has been accessed (read/
written to). Generally initialized to 0 by memory management software (i.e. not 
automatically set by hardware on access.) 

•  AVL & Avail - Bits available for memory management software use.  
•  PS (Page Size) flag - Set to 0 for 4KB pages (therefore PDE points to PTE). 

Set to 1 for large page (4 MB), and the PDE points directly at a large page. For 
the case we’re covering right now (32bit-32bit-4KB pages) it MUST be set to 
0. 

•  G (Global) Flag - Translations between a linear and physical address is 
cached in the Translation Lookaside Buffer (TLB - talked about later). If set to 
1, this cached translation will not be flushed if CR3 is changed to point at a 
different Page Directory. If set to 0, this translation will be flushed from the TLB 
as normal, when CR3 changes. We’ll revisit this later. 

•  Page-Table Base Address - Upper 20 bits of the physical address for the 
base of a Page Table. The bottom 12 bits of the physical address are assumed 
to be 0s. (I.e. the page table must start on a 12-bit (4KB) aligned address). 

Bold are the more important fields 
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Page Table Entry (PTE) Fields 

•  P (Present) Flag - If set to 1 the pointed to page is present in physical 
memory. If 0, either the linear address space is empty (the default 
starting state) or the memory has been paged to file. If 0, bits 1-31 are 
available for software-defined purposes. 

•  R/W (Read/Write) Flag - If 1, the pages pointed to are read/write. If 0, 
read-only. (Still subject to the Page Directory permissions, per table 
4-3.) 

•  U/S (User/Supervisor) Flag - If 1, pages can be accessed by CPL == 
3 (User mode), if 0, pages can only be access by CPL < 3 (Supervisor 
mode).  

•  U/S and R/W flags interact with the CR0.WP (Write Protect) Flag in the 
following way: If CR0.WP == 1, even supervisor mode code cannot 
write to a read-only page. If CR0.WP == 0, supervisor code can write 
wherever it wants. 

•  All these flags are used exactly the same way as in the PDE! 

Bold are the more important fields 
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Page Table Entry (PTE) Fields 2 

•  Page-level write-through (PWT) flag & Page-level cache disable (PCD) flag - 
Control caching aspects, but we’re not getting into caching in this class. 

•  A (Accessed) Flag - If 1, the page pointed to has been accessed (read/written 
to). Generally initialized to 0 by memory management software (i.e. not 
automatically set by hardware on access.) 
D (Dirty) Flag - If 1, the page pointed to has been written to. Generally 
initialized to 0 by memory management software (i.e. not automatically set by 
hardware on access.) 

•  PAT (Page Attribute Table) Flag - Extends PWT and PCD capabilities, and 
thus we ignore it in this class.  

•  Avail - Bits available for memory management software use.  
•  G (Global) Flag - Translations between a linear and physical address is 

cached in the Translation Lookaside Buffer (TLB - talked about later). If set to 
1, this cached translation will not be flushed if CR3 is changed to point at a 
different Page Directory. If set to 0, this translation will be flushed from the TLB 
as normal, when CR3 changes. We’ll revisit this later. 

•  Page Base Address - Upper 20 bits of the physical address for the base of a 
Page. The bottom 12 bits of the physical address are assumed to be 0s. (I.e. 
the Page must start on a 12-bit (4KB) aligned address). 



Lab: WinDbg & !pte command 
•  !pte takes a VA and prints out the page 

directory and page table information 
•  To start with the simple case, we want 

to force our system to boot in non PAE 
mode (PAE is talked about later). So 
reboot the system and select the “NO 
PAE + DEBUG” entry at the bootloader 
screen 

•  We will talk about what we’re going to 
achieve while it’s rebooting 
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Getting concrete (overshoes)  

•  There is no fixed way that virtual memory has 
to be mapped to physical memory. Different 
OSes use different conventions for how they 
organize their virtual address space, some 
have the kernel at low addresses, some have 
it at high. Some map kernel memory direct to 
physical memory, some don’t. In all cases, 
certain areas often are used for certain things 
simply by having all the code follow a specific 
convention. 
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Windows PDE/PTE organization 
•  By convention, the Page Directory (physical 

memory pointed to by CR3) is mapped to 
0xC0300000. To find the PDE for a given 
Virtual Address (VA), you compute: 
–  0xC0300000 + (upper 10 bits of VA) * sizeof(PDE) 
–  sizeof(PDE) = 4 bytes 

•  By convention, the Page Tables will be 
mapped into memory starting at 0xC0000000. 
To find the PTE for a given VA, you compute: 
–  0xC0000000 + (upper 10 bits of VA) * 

PAGE_SIZE + (middle 10 bits of VA) * sizeof(PTE) 
–  PAGE_SIZE = 0x1000 (4096), sizeof(PTE) = 4 

•  http://msdn.microsoft.com/en-us/library/cc267483.aspx 24 



Example by hand: 
•  GDT Base = 0x8003f000 
•  Binary = 1000 0000 0000 0011 1111 0000 0000 0000 
•  Grouping  = (1000 0000 00)(00 0011 1111) (0000 0000 0000) 
•  Upper 10 bits = 0x200, Middle 10 bits = 0x3F, Bottom 12 = 0 
•  PDE = 0xC0300000 + 0x200 * 4 = 0xC0300800 

–  If you read the 4 bytes at 0xC0300800 you will get the PDE which will have all 
the bits which were previously specified in those big tables 

•  PTE = 0xC0000000 + 0x200 * 0x1000 + 0x3F * 4 = 0xC02000FC 
–  If you read the 4 bytes at 0xC02000FC you will get the PTE which will have all 

the bits which were previously specified in those big tables 
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How do you implement a convention? 
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0xC0300000 

0x300 0x300 
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Not presently here 
•  Both the PDE and PTE have the 0th bit as the Present Bit. 
•  What happens a program attempts to access memory, and during 

translation between the linear and physical memory the hardware 
comes across a PDE or PTE with the present bit set to 0? 

•  It invokes a Page Fault #PF (IDT[14]). The OS-supplied page fault 
handler then determines whether it can recover from the fault. 

•  When a Page Fault occurs, the address which was being attempted 
to be accessed is automatically put into the CR2 register. 

•  Some causes of page faults 
–  Page is paged out (“swapped”) to disk (recoverable) 

•  FYI, page file organization is OS-specific 
–  Automatic stack growth (recoverable) 
–  Attempts to write to read-only memory (recoverable if memory is intended to be 

copy-on-write)  
–  No valid linear-to-physical translation (unrecoverable) 
–  User code accessing memory marked as supervisor (unrecoverable*) (* = see 

slide notes) 
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32 bit to 32 bit 4MB pages 

Library Really long 
scroll ;) 
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32-32-4MB PDE 
•  Fields except for page base address interpreted the same way. (Since 

you can see the D and PAT bits, you can see that it’s kind of 
combining fields from both the PDE and PTE) 

•  Most significant 10 bits specify 4MB-aligned page start (other bits 
assumed to be 0) 

•  Page Size (PS) Flag - MUST be set to 1 to have 4MB page, and for the 
1 to mean anything, the CR4 PSE (Page Size Extensions) flag must be 
set to 1. 



30 

Why would I want ginormous 
pages? 

•  From the Nov 2008 edition of Intel Vol 3a, section 3.7.3: 
•  “When the PSE flag in CR4 is set, both 4-MByte pages and 

page tables for 4-KByte pages can be accessed from the same 
page directory. If the PSE flag is clear, only page tables for 4-
KByte pages can be accessed (regardless of the setting of the 
PS flag in a page-directory entry).” 

•  “A typical example of mixing 4-KByte and 4-MByte pages is to 
place the operating system or executive’s kernel in a large 
page to reduce TLB misses and thus improve overall system 
performance.” 

•  “The processor maintains 4-MByte page entries and 4-KByte 
page entries in separate TLBs. So, placing often used code 
such as the kernel in a large page, frees up 4-KByte-page TLB 
entries for application programs and tasks.” 

•  OK, I can’t defer it any longer, let’s look at the TLB. 
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Translation Lookaside Buffer (TLB) 
•  An in-CPU cache which stores translations between linear 

addresses and physical pages.  
•  The idea being that memory accesses will be faster when the 

hardware does not have to walk from CR3 to the page directory 
and possibly to the page table.  

•  By caching a map which describes which linear page 
corresponds to which physical page, the hardware can just use 
the least significant x bits which specifies the offset into the 
page. 
–  (where x depends on what type of paging layout you’re using - in 

canonical 4KB pages x = 12, in 4MB pages x = 22) 
•  This is similar to the way that the “hidden” part of a segment 

register stores the information from a segment descriptor, so 
that it doesn’t have to go back and walk the GDT. Except it’s 
more complicated in that the TLB is a real cache and follows 
layout like other types of caches. (4-way set associative if you 
know what that means, if not, it’s quite alright.) 
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TLB as a grey box 
(not actually how it looks, just to give you something to visualize) 

Virtual 
Page 
Number 

Physical 
Frame 
Number 

0x80401 0x10001 
0x4F007 0x2BAD1 
0xFEEEE 0x00400 
… … 

32bit linear address 

Virtual Page Offset 
0x4F007 0x700 

Physical Frames 

0x2BAD1000 

0x2BAD0000 

Result: Data stored at virtual memory address 
0x4F007700 is stored at physical memory address  
0x2BAD1700 without consulting the page tables 

0x2BAD1700 
+ 

TLB 

0x2BAD2000 

0x2BAD3000 
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More about the TLB 
•  Whenever CR3 is set to a new value, all TLB entries 

which are not marked as global are flushed. (Only 
ring 0 can mov a value to CR3.) 

•  Ring 0 code can also use the INVLPG instruction to 
invalidate the TLB cache entry for a specified virtual 
memory address. 

•  There are actually multiple TLBs. Generally there are 
four: 
–  Data TLBs: one for caching 4KB translations, one for large 

(2/4MB) pages 
–  Instruction TLBs: one for 4KB, one for large (2/4MB) pages 

•  Number of entries in the cache differs between chip 
microarchitectures and revisions. Example for Core 2 
Duo (T7400 - Merom) in my MacBook Pro: 
–  DTLBs - 256 4KB entries, 32 4MB entries 
–  ITLBs - 128 4KB entries, 8 4MB entries 
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Shadow Walker Rootkit 
•  https://media.defcon.org/dc-13/video/2005_Defcon_V81-

Sherri_Sparks,_Jamie_Butler-Shadow_Walker.m4v 
•  http://www.phrack.com/issues.html?issue=63&id=8 
•  TLB manipulation for fun and profit – hides a page of memory 

from a memory scanner 
•  Exploits the fact that there can be a different translation for the 

same virtual memory address stored in the ITLB vs the DTLB 
•  In order to allow itself to execute normally but fool a scanner, it 

needs to differentiate execute accesses (caused by itself), from 
read/write accesses (caused by a scanner). In order to do this, it 
sets the present bit to 0 for the page it is executing on, and then 
replaces the page fault handler(PFH). 

•  The modified PFH then examines the EIP which was pushed 
with the fault state. If the EIP is within the hidden page, then it is 
execution by the rootkit, and the page fault handler should map 
the virtual memory to the correct frame (thus filling the ITLB). If 
the EIP is anywhere else, then it is some outside entity and the 
page should be mapped to any random frame (thus filling the 
DTLB.) 
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ASCII Art of Dooooom! 
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Defeating Shadow Walker 
•  Check the IDT page fault handler entry to ensure it 

has not been pointed at a different location than the 
expected OS page fault handler. 

•  Integrity check the memory for the legitimate page 
fault handler to ensure it isn’t subject to an inline 
hook. 

•  Manually flush the TLB before scanning memory. 
•  Map each physical page of memory to a target virtual 

memory page and read the page looking for whatever 
you were looking for in the first place. 

•  Profile paging performance. 
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Physical Address Extention (PAE) 

•  A hardware-supported way to address more than 
4GB of RAM by just rewriting your memory manager 
(as opposed to a full system rewrite for 64bit support) 

•  Windows uses a different kernel when PAE is being 
used - ntkrnlpa.exe (as opposed to ntoskrnl.exe) 
–  If you have enabled DEP (Data Execution Prevention) on a 

Windows system, it requires PAE, and thus it will load this 
alternate kernel. 

–  DEP is enabled (for system services) by default post XPSP2, 
therefore your OS is probably running in PAE mode most of 
the time. 
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PAE - 32 bit to 36 bit, 4KB 
pages 
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Do the math 

•  Uhhh…Doesn’t look like traversing through 
those tables lets a single process access 64GB 
of memory… 

•  That’s right! You didn’t really think there was 
going to be a one-to-one mapping from a small 
set (32 bit linear addresses) to a big set (36 bit 
physical addresses) did you? (I did before I paid 
attention ;)) 

•  It doesn’t really help an individual process that 
much, it just helps out the system as a whole, 
because the memory manager has a larger list of 
free frames that it can pull from, so that it doesn’t 
have to page stuff out as often due to lack of 
spare space. 
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Do the math 2 

•  Then what was the point of changing the 
page table layout? 

•  1. If the OS wanted to allow processes to 
access more than 4GB of memory, it could 
support swapping out entries in the Page 
Directory Pointer Table  
–  This would avoid changing CR3 and the 

consequent invalidating of TLB entries 
•  2. There weren’t 4 extra bits available in the 

existing PDEs and PTEs. 
•  3. Room to support new features (like NX/XD 

talked about later.) 
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PAE Entry Formats 
4 bits 

NOTE! 
Bit 63 is the 
XD bit, it’s 
just not 
shown on 
these old 
pictures 
(and like I 
said I dislike 
the new 
format) 

X 
D 

X 
D 

X 
D 



Windows PAE PDE/PTE organization 
•  By convention, the Page Directory (physical 

memory pointed to by CR3) is mapped to 
0xC0600000. To find the PDE for a given 
Virtual Address (VA), you compute: 
–  0xC0600000 + (upper 11 bits of VA) * sizeof(PDE) 
–  sizeof(PDE) = 8 bytes 
–  NOTE: This means Windows is not even using the 

Page Directory Pointer Table!  
•  By convention, the Page Tables will be 

mapped into memory starting at 0xC0000000. 
To find the PTE for a given VA, you compute: 
–  0xC0000000 + (upper 11 bits of VA) * 

PAGE_SIZE + (middle 9 bits of VA) * sizeof(PTE) 
–  PAGE_SIZE = 0x1000 (4096), sizeof(PTE) = 8 

•  http://msdn.microsoft.com/en-us/library/cc267483.aspx 
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Example by hand: 
•  GDT Base = 0x8003f000 
•  Binary = 1000 0000 0000 0011 1111 0000 0000 0000 
•  Grouping  = (1000 0000 000)(0 0011 1111) (0000 0000 0000) 
•  Upper 11 bits = 0x400, Middle 9 bits = 0x3F, Bottom 12 = 0 
•  PDE = 0xC0600000 + 0x400 * 8 = 0xC0602000 

–  If you read the 8 bytes at 0xC0601000 you will get the PDE which will have all 
the bits which were previously specified in those big tables 

•  PTE = 0xC0000000 + 0x400 * 0x1000 + 0x3F * 8 = 0xC04001F8 
–  If you read the 8 bytes at 0xC02000FC you will get the PTE which will have all 

the bits which were previously specified in those big tables 

43 
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PAE - 32 bit to 36 bit, 2MB pages 

•  Left as an exercise to the reader ;) 
•  (used to map ntkrnlpa.exe pages) 
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NX/XD Bit 
•  Originally the NX (No Execute) bit was an AMD 

extension. Intel picked it up as well, as the XD 
(eXecute Disable) bit. It’s more commonly 
referred to as the NX bit though. 

•  The bit implements a “W^X” (write XOR execute) 
policy whereby memory can either be writable or 
executable but not both. 

•  Remember that segmentation has a way of 
preventing memory from being executable, but 
everyone uses page level protections rather than 
segmentation, so this became necessary to 
prevent code from executing in ostensibly-data-
only memory regions such as stack or heap. 

•  Intended for preventing some exploits. 
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NX/XD Bit 2 
•  Any pages which have a PTE, PDE, or PDPTE with 

the XD = 1, are non-executable (higher granularity 
specifications of XD override finer granularity). 

•  Attempts to execute from non-executable pages 
results in a page fault 

•  MS refers to the utilization of XD as Data Execution 
Prevention (DEP) or “Hardware DEP”. “Software 
DEP” refers to MS’s Structured Exception Handler 
sanity checking (“SafeSEH”) and has nothing to do 
with XD. 

•  It’s all well and good until someone uses a different  
type of exploit to turn off DEP ;) 
http://www.uninformed.org/?v=2&a=4 (But I’ll let the exploit 
class talk about that) 



Lab: Investigating NX bits 
•  I couldn’t find any pages in VMWare which had NX 

active. Fail. 
•  I suspect VMWare Server 1.x doesn’t support 

exporting the NX bit to the VM 
•  Here’s some “proof” from someone else’s site that if 

XD is enabled, you should see the MSBit set to 1 
•  kd> !pte 0xFFDF0400 

VA ffdf0400 
PDE at 00000000C0603FF0 PTE at 00000000C07FEF80 
contains 0000000000127063 contains 0000000000152163 
pfn 127 ---DA--KWEV pfn 152 -G-DA—KWEV <- Executable bit is set 
kd> !pte 0x7FFE0400 
VA 7ffe0400 
PDE at 00000000C0601FF8 PTE at 00000000C03FFF00 
contains 000000003D283867 contains 8000000000152005 
pfn 3d283 ---DA--UWEV pfn 152 -------UR-V <- Executable bit is not set 

•  From 
http://www.harmonysecurity.com/blog/2009/11/implementing-win32-
kernel-shellcode.html 47 
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The ol’ switcharoo 
•  In a typical protected mode OS, processes have isolated 

(“protected” ;)) memory spaces, and threads within the same 
process share the memory space. 

•  But how are these memory spaces achieved? Clearly not 
through segmentation.   

•  When the kernel is context switching between processes it 
makes sure each gets a CR3 value which points to a different 
Page Directory (or Page Directory Pointer Table in PAE.) 

•  And the kernel and all modules which operate in the kernel all 
have the same view of memory, because they’re all using 
the same CR3 value. 

•  This is why if someone can load a kernel module/driver, they 
then have free reign to scribble over the kernel or other 
modules. BUT, because the CR3 for userspace processes 
will not be the same as for the kernel, it actually takes some 
Legwork for an attacker (or defender) in kernel space to 
influence the memory of userspace processes. 
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Sharing memory 
•  What about when you don’t want there to be strict 

isolation between memory spaces? 
•  Shared Libraries - The whole point of Dynamic Link 

Libraries (DLLs - Windows) and Shared Objects 
(*nix), is that you don’t want to build a library into 
each executable which uses it, because then you 
have multiple copies of the exact same code stored in 
physical memory, which wasteful. Therefore it is 
desirable to have the library stand alone and map 
that single physical memory region corresponding to 
the library into multiple processes’ virtual address 
spaces. 
–  For reasons discussed in a future class it is desirable, but 

not required, to map the library into the same virtual address 
range in all processes. Not required because you can’t 
prevent the loading of a necessary library just because some 
other jerk library already took its desired virtual memory 
location. 
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Sharing Memory 2 

•  Inter-Process Communication (IPC) - If two 
processes need to send large amounts of data 
between each other, it could be achieved by simply 
mapping a fixed size chunk of physical memory into 
their virtual memory spaces, and then having the 
processes agree on a communications protocol. 
–  Remember though that userspace processes can’t affect 

page tables directly, there must be some OS-supported way 
which they must leverage. E.g. VirtualAlloc()/VirtualProtect() 
on Windows or mmap()/mprotect() on *nix. (Or some more 
user-friendly IPC mechanism.)  

–  A separate technology, Direct Memory Access - DMA, 
operates on the same premise that having hardware devices 
talk to each other through chunks of RAM can be quite fast. 
“DMA: the Fire in your Wire” - Max Dornseif 
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Memory Sharing 
•  Through the eyes of paging structures 
•  (NOTE: I doctored this image slightly, also, pretend 

task is the same as process) 
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Misc Instructions Picked Up 
Along The Way 

•  MOV CR, r32 – (CR = One of the 
Control Registers) 

•  MOV r32, CR – (CR = One of the 
Control Registers) 

•  INVLPG – Invalidate page entry in TLB 


