CISSP[®] Common Body of Knowledge Review: Access Control Domain

Version: 5.10

CISSP Common Body of Knowledge Review by Alfred Ouyang is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Learning Objective Access Control

Access Control domain covers mechanisms by which a system grants or revokes the right to access data or perform an action on an information system.

- File permissions, such as "create", "read", "edit", or "delete" on a file server.
- Program permissions, such as the right to execute a program on an application server.
- Data right, such as the right to retrieve or update information in a database.

CISSP candidates should fully understand access control concepts, methodologies and their implementation within centralized and decentralized environments across an organization's computing environment.

Access Control

- **Definition & Principles**
- Threats
- Types of Access Control
 - Identification, Authentication, Authorization, and Accountability
- Access Control Models
 - Security Models
 - Centralized & Decentralized/Distributed
- Monitor & Management
 - IPS & IDS
 - Security Assessment & Evaluation

Definition & Principles Access Control

- Access is the <u>flow of information</u> between a <u>subject</u> (e.g., user, program, process, or device, etc.) and an <u>object</u> (e.g., file, database, program, process, or device, etc.)
- Access controls are a <u>collection</u> of mechanisms that work together to protect the information assets of the enterprise from unauthorized access.
- Access controls enable management to:
 - Specify <u>which user</u> can access the resources contained within the information system
 - Specify <u>what resources</u> they can access
 - Specify what operations they can perform
 - Provide individual accountability

Reference:

- CISSP All-in-One Exam Guide, 4th Ed., S. Harris, McGraw-Hill
- Official (ISC)² Guide To The CISSP CBK, H. Tipton and K. Henry, (ISC)² Press, Auerbach Publications

Definition & Principles

Security Implementation Principles for Access Control

- Least privilege is a policy that limits both the system's user and processes to access only those resources necessary to perform assigned functions.
 - Limit users and processes to access only resources necessary to perform assigned functions
- <u>Separation of duties</u> means that a process is designed so that separate steps must be performed by different people (i.e. force collusion).
 - Define elements of a process or work function
 - Divide elements among different functions

Definition & Principles Information Protection Environment

- The <u>environment</u> for <u>access control</u> includes the following:
 - Information systems.
 - <u>Facilities</u> (e.g. Physical security countermeasures).
 - <u>Support systems</u> (e.g. Systems that runs the critical infrastructure: HVAC, Utility, Water, etc.)
 - Personnel (e.g. users, operators, customers, or business partners, etc.)

Definition & Principles Security Consideration in System Life Cycle (SLC) ...(1/2)

- 1. Initiation Phase (IEEE 1220: Concept Stage)
 - Survey & understand the policies, standards, and guidelines.
 - Identify information assets (tangible & intangible).
 - Define information security categorization & protection level.
 - Define rules of behavior & security CONOPS.
- 2. Acquisition / Development Phase (IEEE 1220: Development Stage)
 - Conduct business impact analysis (BIA) (a.k.a. risk assessment).
 - Define security requirements and select security controls.
 - Perform cost/benefit analysis (CBA).
 - <u>Security planning</u> (based on risks & CBA).
 - Practice Information Systems Security Engineering (<u>ISSE</u>)
 Process to develop security controls.
 - Develop security test & evaluation (ST&E) plan for verification & validation of security controls.

Reference: NIST SP 800-64, Security Considerations in the Information System Development Life Cycle.

Definition & Principles

Security Consideration in System Life Cycle (SLC) ...(2/2)

- 3. Implementation Phase (IEEE 1220: Production Stage)
 - <u>Implement security controls</u> in accordance with baseline system design and update system security plan (<u>SSP</u>).
 - Perform Security Certification & Accreditation of target system.
- 4. Operations / Maintenance Phase (IEEE 1220: Support Stage)
 - <u>Configuration management</u> & perform <u>change control</u>.
 - Continuous monitoring perform <u>periodic security</u> <u>assessment</u>.
- 5. Disposition Phase (IEEE 1220: Disposal Stage)
 - <u>Preserve information</u>. archive and store electronic information
 - <u>Sanitize media</u>. Ensure the electronic data stored in the disposed media are deleted, erased, and over-written
 - <u>Dispose hardware</u>. Ensure all electronic data resident in hardware are deleted, erased, and over-written (i.e. EPROM, BIOS, etc.

Definition & Principles Information Classification

- <u>Identifies</u> and <u>characterizes</u> the critical information assets (i.e. sensitivity)
- Explains the <u>level of safeguard</u> (protection level) or how the information assets should be <u>handled</u> (<u>sensitivity and confidentiality</u>).

Commercial

- Public.
- Private / Sensitive.
- Confidential / Proprietary.

Military and Civil Gov.

- Unclassified.
- Sensitive But Unclassified (SBU).
- Confidential.
- Secret.
- Top Secret.

Definition & Principles Information Classification – Process

- 1. Determine data classification project objectives.
- 2. Establish organizational support.
- 3. Develop data classification <u>policy</u>.
- 4. Develop data classification <u>standard</u>.
- 5. Develop data classification process flow and procedure.
- 6. Develop tools to support processes.
- 7. Identify application owners.
- 8. Identify data owners and date owner delegates.
- 9. Distribute standard templates.
- 10. Classify information and applications.
- 11. Develop auditing procedures.
- 12. Load information into central repository.
- 13. Train users.
- 14. Periodically review and update data classifications.

Definition & Principles Information Classification – Example Policy (E.O. 12958/13292/13526)

- Classification Levels:
 - <u>Top Secret</u> shall be applied to information, the unauthorized disclosure of which reasonably could be expected to <u>cause</u> <u>exceptionally grave damage to the national security</u> that the original classification authority is able to identify or describe.
 - <u>Secret</u> shall be applied to information, the unauthorized disclosure of which reasonably could be expected to <u>cause</u> serious damage to the national security that the original classification authority is able to identify or describe.
 - <u>Confidential</u> shall be applied to information, the unauthorized disclosure of which reasonably could be expected to <u>cause</u> <u>damage to the national security</u> that the original classification authority is able to identify or describe.

Definition & Principles Information Classification – Example Policy (E.O. 12958/13292/13526)

E.O. 13526, *Classified National Security Information*, Dec. 29, 2009

- Classification Authority:
 - 1) The President, Vice President
 - 2) <u>Agency heads</u> and officials <u>designated by the President in</u> <u>the Federal Register</u>; or
 - 3) <u>Subordinate USG officials</u> who have a demonstrable and continuing <u>need to exercise classification authority</u>.
 - Each delegation of original classification authority shall be in writing and the authority shall not be re-delegated except as provided in this order. Each delegation shall identify the official by name or position title.

Definition & Principles Information Classification – Example Standard (E.O. 12958/13292/13526)

- Classified Categories:
 - military plans, weapons systems, or operations;
 - foreign government information;
 - intelligence activities (including special activities), intelligence sources or methods, or cryptology;
 - foreign relations or foreign activities of the United States, including confidential sources;
 - scientific, technological, or economic matters relating to the national security;
 - United States Government programs for safeguarding nuclear materials or facilities;
 - vulnerabilities or capabilities of systems, installations, infrastructures, projects, plans, or protection services relating to the national security; or
 - the development, production, or use of weapons of mass destruction.

Information Classification – Example Guideline

DoD 5200.01, *Information Security Program*, Feb. 24, 2012 prescribes rules for implementation of E.O. 13526 within DoD.

- Volume 1: Overview, Classification, and Declassification
- Volume 2: Marking of Classified Information
- Volume 3: Protection of Classified Information
- Volume 4: Controlled Unclassified Information (CUI)

Definition & Principles Categories of Security Controls

- Management (Administrative) Controls.
 - Policies, Standards, Processes, Procedures, & Guidelines
 - Administrative Entities: Executive-Level, Mid.-Level Management
- Operational (and Physical) Controls.
 - Operational Security (Execution of Policies, Standards & Process, Education & Awareness)
 - Service Providers: IA, Program Security, Personnel Security, Document Controls (or CM), HR, Finance, etc
 - Physical Security (Facility or Infrastructure Protection)
 - Locks, Doors, Walls, Fence, Curtain, etc.
 - Service Providers: FSO, Guards, Dogs
- Technical (Logical) Controls.
 - Access Controls, Identification & Authorization, Confidentiality, Integrity, Availability, Non-Repudiation.
 - Service Providers: Enterprise Architect, Security Engineer, CERT, NOSC, Helpdesk.

Definition & Principles Types of Security Controls

- <u>Directive Controls</u>. Policy and standard that advise employees of the expected behavior for protecting an organization's information asset from unauthorized access.
- <u>Preventive Controls</u>. Physical, administrative, and technical measures intended to prevent unauthorized access to organization's information asset.
- <u>Detective Controls</u>. Practices, processes, and tools that identify and possibly react to unauthorized access to information asset.
- <u>Corrective Controls</u>. Physical, administrative, and technical countermeasures designed to react to security incident(s) in order to reduce or eliminate the opportunity for the unwanted event to recur.
- <u>Recovery Controls</u>. The act to restore access controls to protect organization's information asset.

Definition & Principles Example Implementations of Access Controls

	Directive	Preventive	Detective	Corrective	Recovery
Management (Administrative)	PolicyGuidelines	 User registration User agreement NdA Separation of duties Warning banner 	 Review access logs Job rotation Investigation Security awareness training 	 Penalty Administrative leave Controlled termination processes 	 Business continuity planning (BCP) Disaster recovery planning (DRP)
Physical/ Operational	• Procedure	 Physical barriers Locks Badge system Security Guard Mantrap doors Effective hiring practice Awareness training, 	 Monitor access Motion detectors CCTV 	 User behavioral modification Modify and update physical barriers 	 Reconstruction Offsite facility

Reference:

- CISSP All-in-One Exam Guide, 4th Ed., S. Harris, McGraw-Hill
- Official (ISC)² Guide To The CISSP CBK, H. Tipton and K. Henry, (ISC)² Press, Auerbach Publications

Definition & Principles Example Implementations of Access Controls

_	Directive	Preventive	Detective	Corrective	Recovery
Technical	• Standards,	 User authentication Multi-factor authentication ACLs Firewalls IPS Encryption 	 Log access and transactions Store access logs SNMP IDS 	 Isolate, terminate connections Modify and update access privileges 	 Backups Recover system functions, Rebuild,

Reference:

- CISSP All-in-One Exam Guide, 4th Ed., S. Harris, McGraw-Hill
- Official (ISC)² Guide To The CISSP CBK, H. Tipton and K. Henry, (ISC)² Press, Auerbach Publications

Questions:

• What are the two security implementation principles for access control?

• What are the four access control environments?

- -

Answers:

- What are the two security implementation principles for access control?
 - Least privilege
 - Separation of duties
- What are the four access control environments?
 - Information systems
 - Facilities
 - Support systems
 - Personnel

Questions:

- In the process of establishing a data classification program, why it is important to develop the policy, standard, process, and procedure?
 - Policy defines...
 - Standard delineates...
 - Process explains ...
 - Procedure provides...

Answers:

- In the process of establishing a data classification program, why it is important to develop the policy, standard, process, and procedure?
 - Policy defines the management's goals and objectives (i.e., requirements) to classify the information assets. Identifies the roles and assign responsibilities.
 - Standard delineates the data types and defines the protection levels required.
 - Process explains the mandatory activities, actions, and rules for data classification.
 - Procedure provides the step-by-step instruction on how to identify and classify data.

Topics Access Control

• Definition & Principles

Threats

- Types of Access Control
 - Identification, Authentication, Authorization, and Accountability
- Access Control Models
 - Security Models
 - Centralized & Decentralized/Distributed
- Monitor & Management
 - IPS & IDS
 - Security Assessment & Evaluation

Example Threat List Related To Access Control

- Computing threats:
 - Denial of services (DoS) threats
 - Ping-of-death
 - Smurfing
 - SYN flood
 - Distributed DoS (DDoS)
 - Unauthorized software
 - Malicious code
 - Mobile code
 - Software defects
 - Buffer overflows
 - Covert channel
 - Trapdoor

- Physical threats:
 - Unauthorized physical access
 - Dumpster diving
 - Shoulder surfing
 - Eavesdropping
 - Electronic emanations
- Personnel/Social engineering threats:
 - Disgruntle/ careless employees
 - Targeted data mining/ "browsing"
 - Spying
 - Impersonation

- Ping-of-Death
 - Attack: The originator sends an ICMP Echo Request (or ping) with very large packet length (e.g. 65,535 bytes) to the target machine. The physical and data-link layers will typically break the packet into small frames. The target machine will attempt to re-assemble the data frames in order to return an ICMP Echo Reply. The process of reassemble large packet may cause buffer overflow of the target machine.
 - Countermeasure:
 - Apply patches for buffer overflow
 - Configure host-based firewall to block ICMP Echo Request (ping)

- <u>Smurfing</u> (a.k.a. ICMP storm or ping flooding).
 - Attack: The attacker sends a large stream of ping packets with spoofed source IP address to a broadcast address. The intermediaries receives the ping and returns the ICMP Echo Reply back using the spoofed IP address (which is the address of the target machine).

- Countermeasure:

- Disable IP-directed broadcasts on routers (using ACL)
- Configure host-based firewall or server OS to block ICMP Echo Request (ping)

- <u>SYN Flooding</u>
 - Attack: Client system sending a SYN (synchronization) message with spoofed source address to server. Server respond by returning a SYN/ACK message. However, since the return source address is spoofed so the server will never get to complete the TCP session. Since TCP is a stateful protocol, so the server stores this "half-open" session. If the server receives false packets faster than the legitimate packets then DoS may occur, or server may exhaust memory or crash for buffer overflow.
 - Countermeasure:
 - For attacks originated from outside: Apply "Bogon" and private IP inbound ACL to edge (perimeter) router's external interface.
 - For attacks originated from inside: Permit packets originated from known interior IP address to outbound ACL on edge router's internal interface.

Threats to Access Control **DoS Threats – Distributed DoS**

- <u>Distributed Denial-of-Service (DDoS)</u> requires the attacker to have many compromised hosts, which overload a targeted server with network packets.
 - Attack: The attacker installs malicious software into target machine. The infected target machine then becomes the "bots" (/"zombies") that infects more machines. The infected machines begins to perform distributed attacks at a preprogram time (time bomb) or the a initiation command issued through covert channel. "Bots" (/"zombies") can initiate legitimate TCP session or launch SYN flooding, Smurfing, or Ping-of-death attacks to prevent the target machine(s) from providing legitimate services.

- Countermeasure:

- Harden servers or install H-IDS to prevent them become "bots" (/ "zombies").
- Setup N-IPS at the edge (perimeter) network.
- Active monitoring of H-IDS, N-IDS, N-IPS, and Syslogs for anomalies.

Unauthorized Software – Malicious Code Threats

- <u>Viruses</u> programs attaches itself to executable code and is executed when the software program begins to run or an infected file is opened.
- <u>Worms</u> programs that reproduce by copying themselves through computers on a network.
- <u>Trojan horse</u> code fragment that hides inside a program and performs a disguised functions.
- Logic bomb a type of Trojan horse that release some type of malicious code when a particular event occurs.

Unauthorized Software – Malicious Mobile Code Threats

- Macro Viruses
- Trojans and Worms
- Instant Messaging Attacks
- Internet Browser Attacks
- Malicious Java Applets
- Malicious Active X Controls
- Email Attacks

Software Defects: Buffer Overflow Threats

- One of the <u>oldest</u> and <u>most common</u> problems to software.
- A buffer overflow occurs when a program or process tries to store more data in a buffer (temporary data storage area) than it was intended to hold.
- Vulnerability is caused by lack of parameter checking or enforcement for <u>accuracy</u> and <u>consistency</u> by the software application or OS.
- Countermeasure:
 - Practice good SDLC process (code inspection & walkthrough).
 - Apply patches for OS & applications.
 - If available, implement hardware states and controls for memory protection. Buffer management for OS.
 - Programmer implementing parameter checks and enforce data rules.

Software Defects – Memory Protection Threats

- <u>Memory protection</u> is enforcement of access control and privilege level to prevent unauthorized access to OS memory.
- Countermeasures:
 - Ensure all system-wide data structures and memory pools used by <u>kernel-mode</u> system components can <u>only be</u> <u>accessed while in kernel mode</u>.
 - <u>Separate software processes</u>, protect private address space from other processes.
 - <u>Hardware-controlled</u> memory protection
 - Use <u>Access Control List (ACL)</u> to protect shared memory objects.

Software Defects – Covert Channel Threats*

- <u>Covert channel</u> is an un-controlled information flow (or unauthorized information transfer) through hidden communication path(s).
 - Storage channel
 - <u>Timing</u> channel
- Countermeasure steps:
 - <u>Identify</u> potential covert channel(s)
 - Verify and validate existence of covert channel(s)
 - <u>Close</u> the covert channel by install patch or packet-filtering security mechanism.

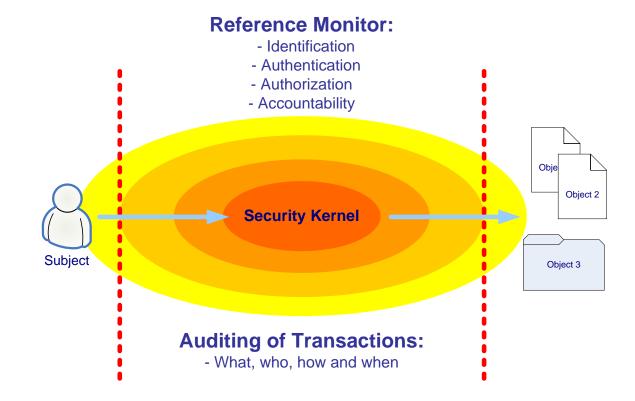
* Note: The "classic" definition of covert channel is in the context of TCSEC (i.e., storage & timing channels).

Topics Access Control

- Definition & Principles
- Threats
 - **Types of Access Control**
 - Identification, Authentication, Authorization, and Accountability
- Access Control Models
 - Security Models
 - Centralized & Decentralized/Distributed
- Monitor & Management
 - IPS & IDS
 - Security Assessment & Evaluation

Types of Access Control Control Types & Examples

- Administrative (or Directive Controls)
 - Regulations, Policies, Standards, Guidelines, Processes & Procedures
- Physical and Technical Controls
 - Preventive Controls that avoid incident
 - <u>Detective</u> Controls that identify incident
 - <u>Corrective</u> Controls that remedy incident
 - <u>Recovery</u> Controls that restores baseline from incident


Subject vs. Object (TCB – Orange Book)

- <u>Subject</u> requests service.
 - User, program, process, or device, etc.
 - Can be labeled to have an access sensitivity level (e.g. Unclassified, Secret, Top Secret).
- <u>Object</u> provide the requested service.
 - File, database, program, process, device, etc.
 - Can be labeled to have an access sensitivity level (e.g. Unclassified, Secret, Top Secret).

- Types of *identity*:
 - User ID, Account Number, User Name, etc.
 - <u>Unique</u>, <u>standard naming convention</u>, <u>non-descriptive of job</u> <u>function</u>, secure & documented <u>issuance process</u>.
- Types of <u>authentication</u>:
 - <u>Something the subject knows</u> Password, pass phrase, or PIN.
 - Something the subject has Token, smart card, keys.
 - <u>Something the subject is</u> Biometrics: fingerprints, voice, facial, or retina patterns, etc.

- Access control is not complete without coupled with auditing for accountability.
- Reference monitor provides the mechanism for access control. (i.e., AAA)

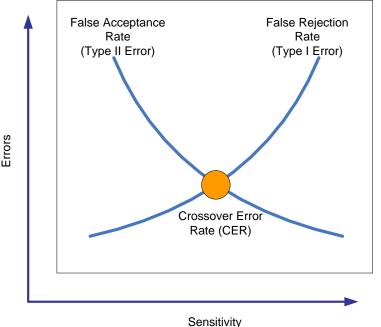
Something the Subject KNOWS

- <u>Password</u> is a protected word (or string of characters) that authenticates the subject to the system.
- <u>Passphrase</u> is a sequence of characters or words.
 Passphrase can also be used to generate encryption keys.
- **<u>PIN</u>** is Personal Identification Number.

Concept of Authentication Mechanism

Something the Subject KNOWS

- Password Management
 - <u>Control Access</u>
 - Restrict access to password files
 - Encrypt password files (MD5, SHA)
 - Password Structure
 - Password length
 - Password complexity: a mix of upper/lowercase letters, numbers, special characters
 - Not using common words found in dictionary (use Rainbow Table)
 - Password Maintenance
 - Password aging, e.g., change in <90> days
 - Password can not be reused within <10> password changes
 - <One> change to <every 24 hr.>


Something the Subject HAS

- <u>One-Time Password</u> (OTP)
 - Something generated from a RNG device that generates an OTP
- <u>Synchronous Token</u>
 - Counter-based token (e.g. RSA token)
 - Clock-based token (e.g. Kerberos token)
- <u>Asynchronous Token</u>
 - Challenge-response devices (e.g. token cards, grid cards)
 - Smart card. With memory or processor chips that accepts, stores, and transmit certificates or keys that generate tokens. (e.g. FIPS 201 PIV)

Concept of Authentication Mechanism Something the Subject IS

- <u>Biometrics</u>: Fingerprints, Hand geometry, Facial geometry, Retina patterns, Voice patterns, etc.
- Challenges:
 - <u>Crossover error rate</u> (<u>CER</u>) (false acceptance vs. false rejection)
 - Processing speed: Biometrics are complex, one-to-many, many-to-many.
 - User acceptance: <u>Privacy</u> is a big issue.

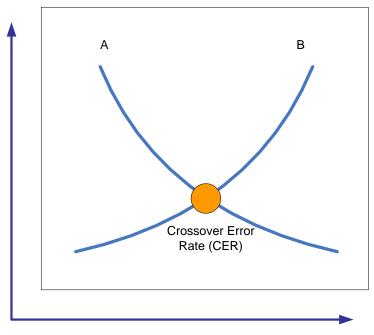
Questions:

• What are the three types of access control?

- What are the six categories of controls?
 - _
 - •
 - -
 - _

Answers:

- What are the three types of access control?
 - Administrative (Management)
 - Technical (Logical)
 - Physical (Operational)
- What are the five categories of controls?
 - Preventive
 - <u>Detective</u>
 - Corrective
 - <u>Recovery</u>
 - Directive

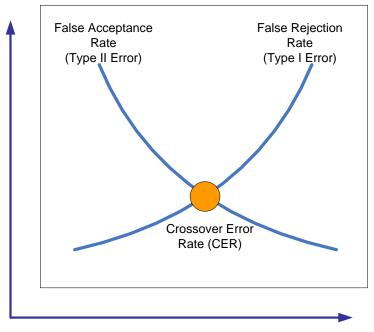

Questions:

• What are the three types of authentication factors?

Errors

- For biometrics authentication...
- What is A?

• What is B?



Answers:

• What are the three types of authentication factors?

Errors

- Something the subject knows
- Something the subject has
- Something the subject is
- For biometrics authentication...
- What is A?
 - False Acceptance Rate (Type II Error)
- What is B?
 - False Rejection Rate (Type I Error)

Topics Access Control

- Definition & Principles
- Threats
- Types of Access Control
 - Identity & Authentication
 - **Access Control Models**
 - Security Models
 - Centralized & Decentralized/Distributed
- Monitor & Management
 - IPS & IDS
 - Security Assessment & Evaluation

Access Control Models Security Models Revisited...

- Security objectives for access control: confidentiality and integrity.
- Implementation principles: least-privilege, separation-ofduties.
- Access control governs the information flow.
 - Discretionary access control (<u>DAC</u>) is where the information owner determines the access capabilities of a subject to what object(s).
 - Mandatory access control (MAC) is where a subject's access capabilities have been pre-determined by the security classification of a subject and the sensitivity of an object(s).
- Security models that specifies <u>access control of</u> <u>information operations</u>:
 - HRU Access Capability Matrix, Bell-LaPadula (BLP), Biba, and Clark-Wilson
 - Rule-set based Access Model:
 - Role-based Access Control (RBAC)

Access Control Models Access Control Matrix

- <u>Access control matrix</u> specifies access relations between <u>subject-subject</u> or <u>subjectobject</u>.
 - One row per subject.
 - One column per subjects or object.

		Object / Subject						
		Α	В	С	D	Е	F	G
	1	•				•		
	2		•				•	
t	3							
bje	4							•
Subject	5		•		•			
	6						•	
	7					•		

Access Control Models

Access Control Matrix – Using Graham-Denning

- <u>Graham-Denning</u> is an <u>information access control</u> <u>model</u> operates on a set of <u>subjects</u>, <u>objects</u>, <u>rights</u> and an <u>access capability matrix</u>.
 - How to securely create an object/subject.
 - How to securely delete an object/subject.
 - How to securely provide the read access right.
 - How to securely provide the grant access right.
 - How to securely provide the delete access right.
 - How to securely provide the transfer access right.

Access Control Models Access Permission

- List of typical access permission:
 - UNIX has 8 access permission settings for 3 types of users (o,g,w)
 - Combination of Read (r), Write (w), Execute (x)
 - --- All types of access denied
 - --x Execute access is allowed only
 - - w- Write access is allowed only
 - - wx Write and execute access are allowed
 - r-- Read access is allowed only
 - r-x Read and execute access are allowed
 - rw- Read and write access are allowed
 - rwx Everything is allowed
 - Windows has 14 access permission settings for SID & UID!
 - Full Control,
 - Traverse Folder / Execute File, List Folder / Read Data,
 - Read Attributes, Read Extended Attributes,
 - Create Files / Write Data, Create Folders / Append Data,
 - Write Attributes, Write Extended Attributes,
 - Delete Subfolders and Files, Delete,
 - Read Permissions, Change Permissions, Take Ownership

Access Control Models

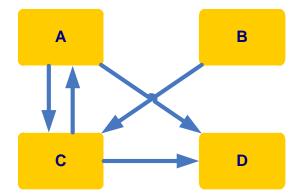
Capability Tables – Harison-Ruzzo-Ullman (HRU)

- Capability table = Access control matrix + Access permissions
- <u>Row</u> = <u>Capability list</u> (Subject's access permission)
- <u>Column</u> = <u>Control list</u> (Objects)

		Object						
		Program A	Program B	Program C	Database D	Database E	File F	File G
	Joe User 1	r-x			r-x		rwx	rwx
Subject	User Role 2						-WX	-WX
	Process 3	r-x		X		rwx		
	Process 4			X	rwx	rwx		
	Program A	rwx	X		rwx			

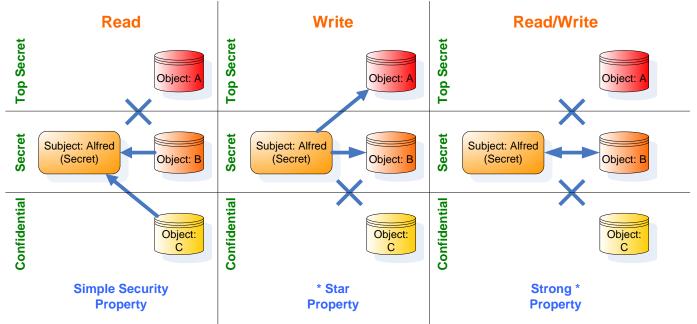
Access Control Models Access Control List (ACL)

- <u>Access control list</u> (ACL) is most common implementation of DAC.
- Implemented using access control matrices with access permissions, i.e. capability table.
 - Define subject's access to and access permissions to object(s).


		Object						
		Program A	Program B	Program C	Database D	Database E	File F	File G
Subject	Joe User 1	r-x	r-x	X	x		r	rwx
	Jane User 2		r-x	X			r	r
	John User 3	r-x		X		X	r	r

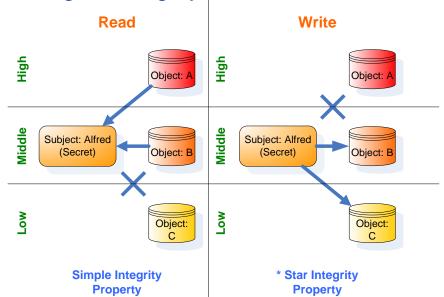
Information Flow Model illustrates the direction of data flow between objects

- Based on <u>object security levels</u>
- Information flow is constrained in accordance with object's security attributes
- Covert channel analysis is simplified


Note: Covert channel is moving of information to and from unauthorized transport

	Α	В	С	D
Α	N/A		X	X
В		N/A	X	
С	X		N/A	X
D				N/A

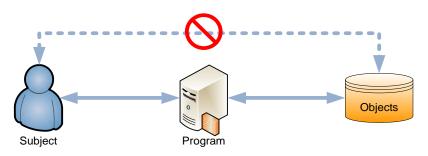
Bell-LaPadula confidentiality policy:


- Simple security property
 - Subject cannot read object of higher sensitivity.
- <u>Star property</u> (* property)
 - Subject cannot write to object of lower sensitivity.
- <u>Strong Star property</u> (Strong * property)
 - Subject cannot read/write to object of higher/lower sensitivity.

Access Control Models Biba Security Model

Biba security policy:

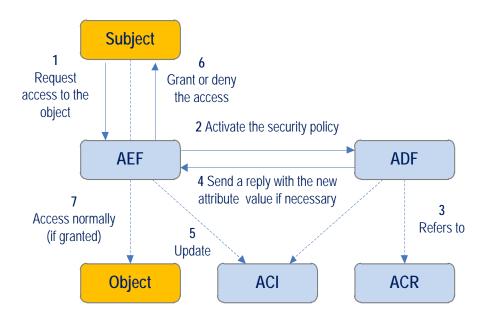
- Simple integrity condition
 - Subject cannot read objects of lesser integrity.
- Integrity star * property
 - Subject cannot write to objects of higher integrity.
- Invocation property
 - Subject cannot send messages (logical request for service) to object of higher integrity.



Access Control Models Clark-Wilson Security Model

<u>Clark-Wilson</u> is a state-machine security model addresses information flow and the integrity goals of:

- Preventing unauthorized subjects from modifying objects
- Preventing authorized subjects from making improper modification of objects
- Maintaining internal and external consistency
- Well-formed transaction
 - Preserve/ensure internal consistency
 - Subject can manipulate objects (i.e. data) only in ways that ensure internal consistency.
- Access Triple: Subject-Program-Object
 - Subject-to-Program and Program-to-Object.
 - Separation-of-Duties

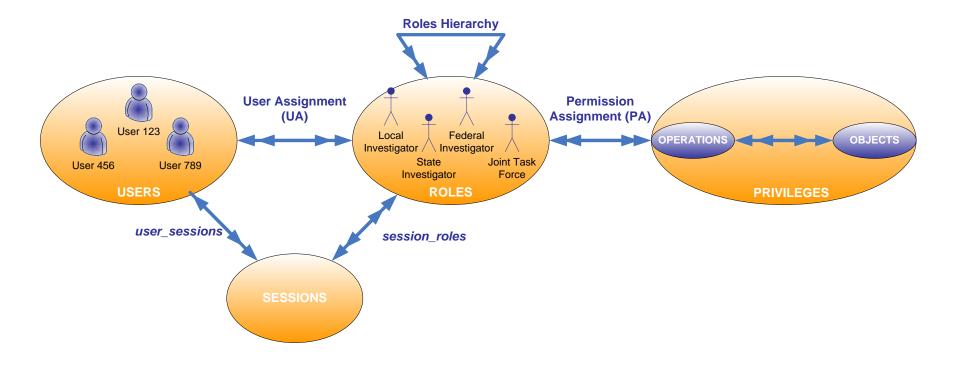


Reference: D. Clark, D. Wilson, *A Comparison of Commercial and Military Computer Security Policies*, IEEE Symposium on Security and Privacy, 1987

Access Control Models

Rule-set Based Access Control Model

- Access is based on a set of rules that determines capabilities.
- The model consists of:
 - Access enforcement function (AEF)
 - Access decision function (ADF)
 - Access control rules (ACR)
 - Access control information (ACI)



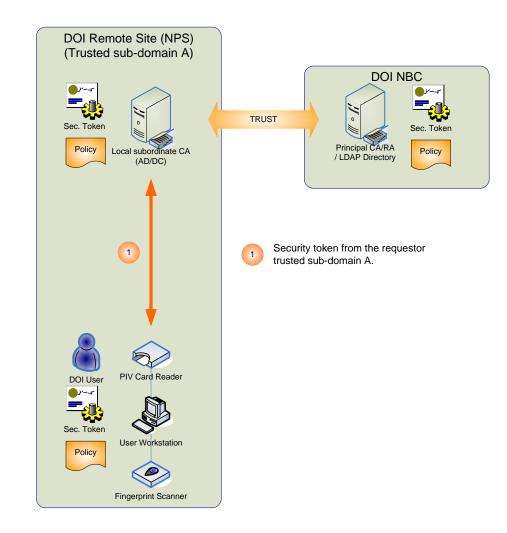
Access Control Models Role-based Access Control (RBAC)

- Access control decisions are based on job function.
- Each role (job function) will have its own access capabilities.
- Access capabilities are <u>inherited</u> by users assigned a job function.
- Determination of role is <u>discretionary</u> and is in compliance with security access control policy.
- Groups of users need similar or identical privileges.
 - Generally associated with <u>DAC</u>.
 - Privileges appropriate to functional roles are assigned
 - Individual users are enrolled in appropriate roles.
 - Privileges are inherited.

Access Control Models Role-based Access Control (RBAC)

- Limited hierarchical RBAC-based <u>authorization</u> for web services.
 - User Assignment: Identity-to-roles.
 - Permission Assignment: Roles-to-privileges.

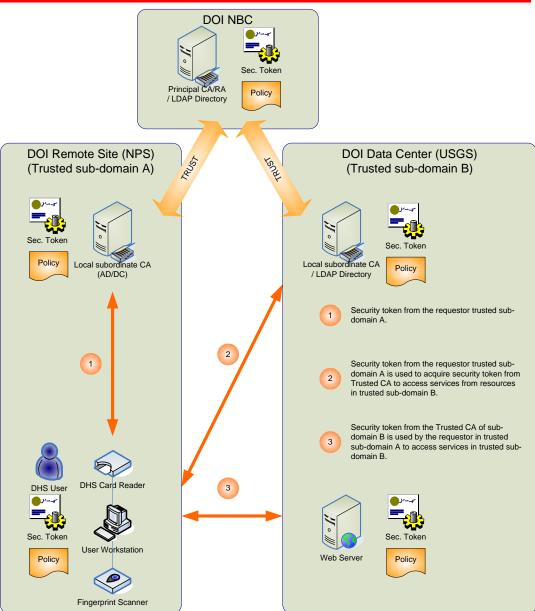
AAA (Authentication, Authorization, Accounting) protocols.


- **RADIUS** (Remote Access Dial-In User Service)
 - Use UDP/IP-based frame protocols: <u>SLIP</u> (Serial Line Internet Protocol) and <u>PPP</u> (Point-to-Point Protocol).
 - In a client/server configuration.
- <u>TACACS</u> (Terminal Access Controller Access Control System)
 - Proprietary (Cisco Systems), TACACS+ a proposed IETF standard.
 - TCP/IP-based, Transaction includes <u>CHAP</u> or <u>PAP</u>.
- <u>Diameter</u> (not an acronym)
 - RFC 3588 for access control of mobile devices.
 - Uses UDP transport in a <u>peer-to-peer</u> configuration.

Technical (Logical) Access Controls Decentralized Access Control Method

Single Sign-On (SSO): Key enabler of SSO is "<u>chain of certificates</u> <u>and tokens</u>."

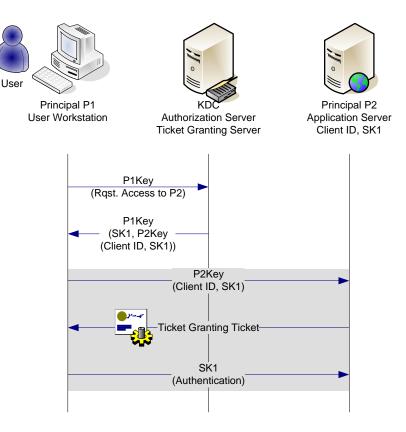
Step 1: Sign-On


- Subject (user) authenticates against a master certification authority (CA) system using singe-, two-, or three-factor authentication method.
- A security token is then issued to the authenticated subject along with access policy.

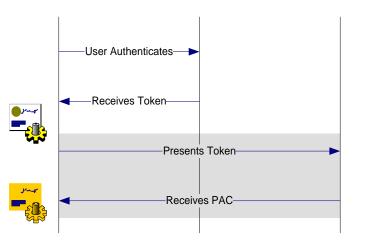
Technical (Logical) Access Controls Decentralized Access Control Method

Single Sign-On Step 2: Distributed Auth.

- The objects (i.e. web browser and web server) exchange certificate tokens and negotiate SSL/TLS session.
- The subjects' authenticated credential is asserted using SAML and validated by the root CA.


<u>Kerberos</u> is also based on a central authentication authority-Key distribution center (<u>KDC</u>). KDC performs authentication service (<u>AS</u>), and ticket granting service (<u>TGS</u>) functions.

- Kerberos provides:
 - Encryption of data for confidentiality, non-repudiation for integrity.
 - Transparency. The authentication & key distribution process is transparent to subjects
- In many ways, PKI is similar to Kerberos, except Kerberos uses DES cryptographic algorithm for encrypting authentication information and PKI supports various type of crypto. cipher.


Technical (Logical) Access Controls Decentralized Access Control Method

- The Kerberos Key Distribution Center (<u>KDC</u>) server serves two functions:
- An Authentication Server (<u>AS</u>), which authenticates a Principal via a pre-exchanged Secret Key
- A Ticket Granting Server (TGS), which provides a means to securely authenticate a trusted relationship between two Principals.

- Secure European System for Applications in a Multi-vendor Environment (<u>SESAME</u>)
- Offers SSO with added distributed access controls <u>using</u> <u>public-key cryptography</u> for protect internetworking data.
- Offers role-based access control (<u>RBAC</u>).
- Use Privileged Attribute Certificate (<u>PAC</u>) (similar to Kerberos Ticket).
- SESAME components can be accessible through Kerberos v5 protocol.

Questions:

- What are the difference between discretionary access control (DAC) and mandatory access control (MAC)?
 - DAC:
 - MAC:

- Role-based access control is based on ?
- Rule-based access control is based on ?

Answers:

- What are the difference between discretionary access control (DAC) and mandatory access control (MAC)?
 - DAC: Information owner determines who can access and what privilege the subject may has.
 - MAC: Information owner and system determines assess.
 <u>Clearance of subject = Classification of object</u>.
- Role-based access control is based on ?
 <u>User's job function</u>.
- Rule-based access control is based on ?
 - Rules created by information owners.

Topics Access Control

- Definition & Principles
- Threats
- Types of Access Control
 - Identification, Authentication, Authorization, and Accountability
- Access Control Models
 - Security Models
 - Centralized & Decentralized/Distributed
 - Monitor & Management
 - IPS & IDS
 - Security Assessment & Evaluation


Access Control Monitor & Management Intrusion Prevention & Detection

- Intrusion Prevention System (IPS)
 - In-line preventive control device.
 - Actively intercept and forward packets.
 - Access control and policy enforcement.
 - Usually a network-based device.
- Intrusion Detection Systems (IDS)
 - Passive monitoring devices.
 - Network-based (N-IDS) and Host-based (H-IDS).
 - Passively monitor and audit transmitted packets.
 - Patter/Signature matching or Anomaly-based.
- IDS Analysis Methods & Engine
 - Pattern / Stateful Matching Engine.
 - <u>Anomaly-based</u> Engine.

Access Control Monitor & Management Network-based IPS (N-IPS)

N-IPS is an <u>in-line security device</u> for <u>preventive</u> <u>controls</u>.

- Ability to block attacks in real time.
- Actively intercept and forward packets.

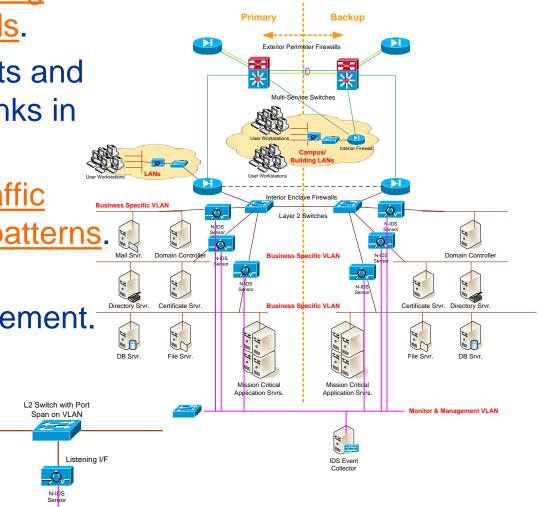
Access Control Monitor & Management Network-based IDS (N-IDS)

N-IDS is a passive monitoring device for detective controls.

- Monitors network packets and traffic on transmission links in real time.
- Analyzes protocols & traffic based on signatures & patterns.
- Two interfaces: Monitor (promiscuous) & management.

Listening I/F

Reporting I/F


N-IDS

Senso

Business Specific VLAN

Monitor & Management VLAN

Reporting I/F

Business Specific VLAN

Monitor & Management VLAN

Access Control Monitor & Management Host-based IDS (H-IDS)

- H-IDS Program (Agent) on host to detect intrusions
- Analyze <u>event logs</u>, <u>critical system files</u> & other <u>specified log files</u>.
- Compare file signatures (MD-5 or SHA-1) to detect unauthorized changes.
- Monitoring or alert message should be configured to send through dedicated management network interface.

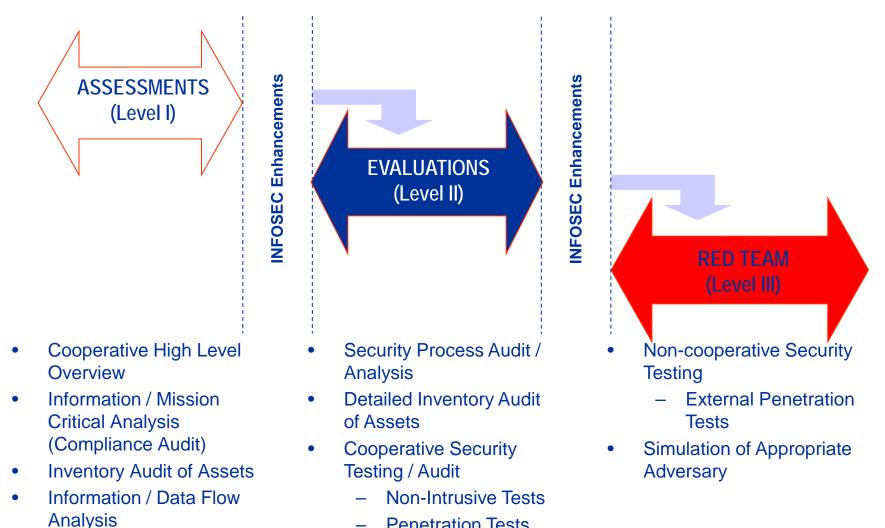
IDS Analysis Methods & Engine – Pattern/Stateful Matching

- Pattern Matching Method
 - Scans incoming packets for specific <u>byte sequences</u> (signatures) stored in a database of know attacks.
 - Identifies known attacks.
 - Require periodic updates to signatures.
- Stateful Matching Method
 - Scan traffic stream rather than individual packets.
 - Identifies known attacks.
 - Detects signatures across multiple packets.
 - Require periodic updates to signatures.

- <u>Statistical</u> / <u>Traffic Anomaly-based</u>
 - Develop <u>baseline</u> of "<u>normal</u>" traffic activities and throughput.
 - Can identify <u>unknown</u> attacks and DoS.
 - Must have a <u>clear understanding</u> of "<u>normal</u>" traffic for IDS tuning.
- Protocol Anomaly-based
 - Looks for deviations from RFC standards.
 - Can identify <u>unknown</u> attacks.
 - May not handle complex protocols (SOAP, XML, etc).

Audit trail is a record of system activities that captures system, network, application & user activities.

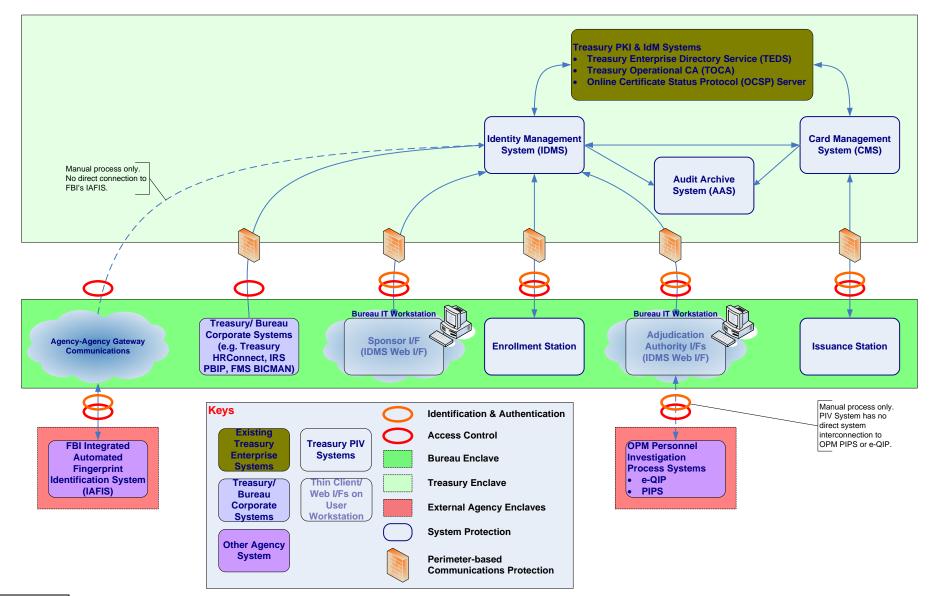
- Audit trail can:
 - Alert security officer of suspicious activities.
 - Provide details on non-conformance or illegal activities.
 - Provide information for legal proceedings.
- Audit trail issues:
 - <u>Data volume</u>: need to set <u>clipping level</u> (event filtering) to log event details.
 - Personnel training: to identify non-conformance or illegal activities.
 - <u>Store & archive</u>: need access control to audit logs, and secure storage for archive.


Security Assessment & Evaluation vs. Security Audit

- <u>Security Audit</u>: To verify meeting of defined & specified security requirements.
 - Used mostly in Security Certification & Accreditation Process (CT&E, ST&E).
 - Security audit produces <u>conformance metrics</u>.
- <u>Security/Vulnerability Assessment & Evaluation</u>: To find security vulnerabilities and assess potential exposures.
 - Used mostly in Risk Assessment & Evaluation Process.
 - Vulnerability assessment produces profile of security posture.

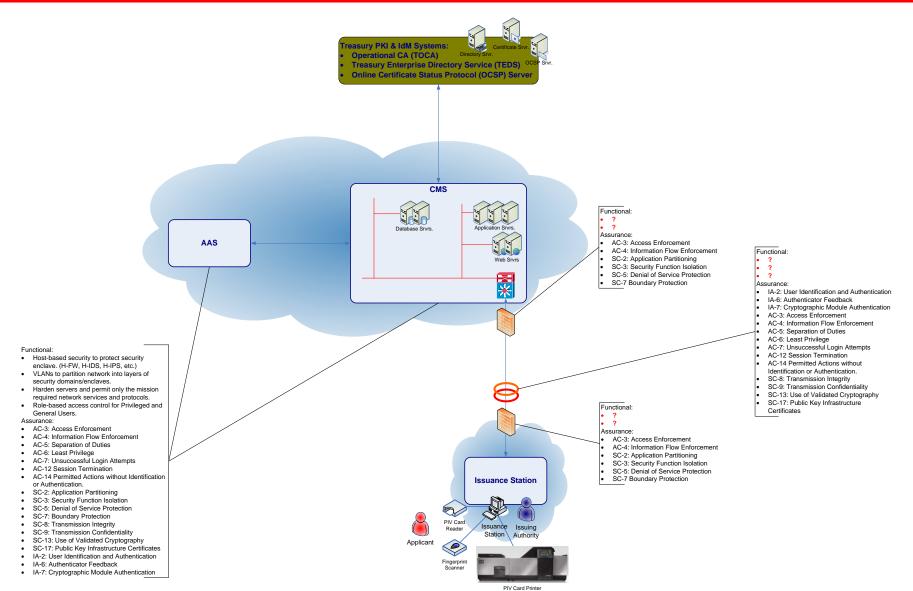
Access Control Monitor & Management

Security Assessment & Evaluation – NSA Defined (White, Blue & Red Teams)


Penetration Tests

1. Classroom Exercise

2. Review Answers



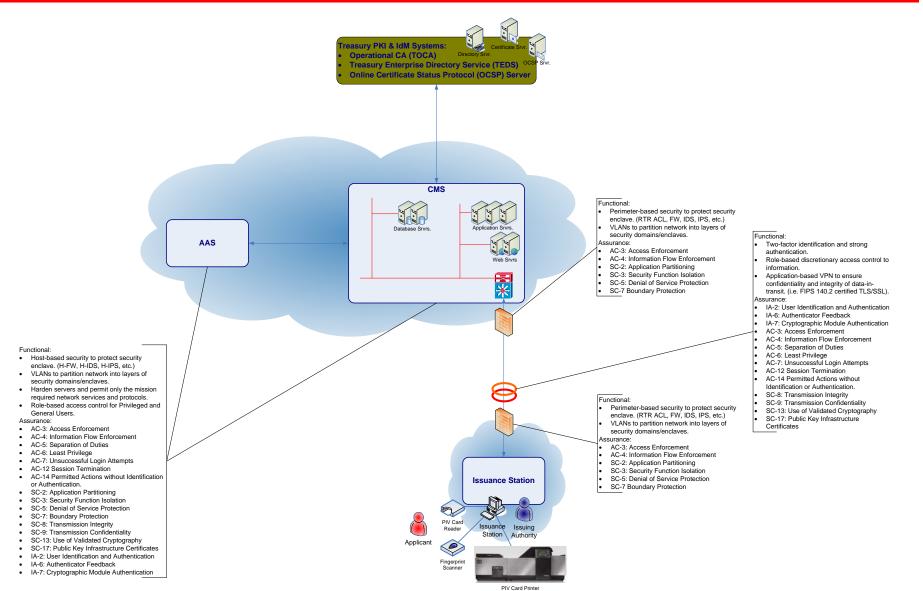
Exercise #1:

	PIV System Data Flow										
	IDMS	CMS	Enrollment Station	Issuance Station	Sponsorship I/F	Adjudication I/F	Treasury PKI/IdM	Corporate System	AAS		
IDMS											
CMS											
Enrollment Station											
Issuance Station											
Sponsorship I/F											
Adjudication I/F											
Treasury PKI/IdM											
Corporate System											
AAS											

Exercise #2: Security Controls

Exercise #2: Security Controls

• Please describe the functional security controls needed for meeting the assurance requirements...



	PIV System Data Flow										
	IDMS	CMS	Enrollment Station	Issuance Station	Sponsorship I/F	Adjudication I/F	Treasury PKI/IdM	Corporate System	AAS		
IDMS		Х	X		X	Х	Х		Х		
CMS	Х			Х			Х		Х		
Enrollment Station	Х										
Issuance Station		Х									
Sponsorship I/F	Х										
Adjudication I/F	Х										
Treasury PKI/IdM	Х	Х									
Corporate System	Х										
AAS											

Exercise #2: Security Controls

