
CISSP Common Body of Knowledge Review by Alfred Ouyang is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900,
Mountain View, California, 94041, USA.

CISSP® Common Body of Knowledge
Review:

 Software Development
Security Domain

Version: 5.10

Learning Objective
Software Development Security Domain

Software Development Security domain refers to the controls that
are included within systems and application software and the steps
used in their development (e.g., SDLC).
Software refers to system software (operating systems) and
application programs such as agents, applets, software, databases,
data warehouses, and knowledge-based systems. These
applications may be used in distributed or centralized
environments.
The candidate should fully understand the security and controls of
the system development process, system life cycle, application
controls, change controls, data warehousing, data mining,
knowledge-based systems, program interfaces, and concepts used
to ensure data and application integrity, security, and availability.

- 2 -
Reference: CISSP CIB, January 2012 (4.17.14 Rev. 13)

Introduction
Current State of Insecurity in Federal Agencies

•  “The 25 major agencies of Federal government
continue to improve information security performance
relative to C&A rate and testing of contingency plans
and security controls.” – OMB FY 2008 Report to Congress on Implementation of FISMA.

•  Yet, “20 of 24 major agencies indicated that
inadequate information security controls were either a
significant deficiency or a material weakness.”*

3

% of System with a: FY 2005 FY 2006 FY 2007 FY 2008
Certification and Accreditation
(C&A) 85% 88% 92% 96%

Tested Contingency Plan 61% 77% 86% 92%
Tested Security Controls 72% 88% 95% 93%
Total Systems Reported 10,289 10,595 10,304 10,679

* Source: GAO-08-496, Information Security– Although Progress Reported, Federal
Agencies Need to Resolve Significant Deficiencies, February 14, 2008

Introduction
Current State of Insecurity in Federal Agencies

•  # of security incidents keeps growing*…

4 * Source: US-CERT

FY’05 FY’06 FY’07 FY’08 FY’09 FY’10 FY’11
1.	
 Unauthorized	
 Access 304 706 2,321 3,214 4,848 5,782 6,959
2.	
 Denial	
 of	
 Service 31 37 36 26 48 28 33
3.	
 Malicious	
 Code 1,806 1,465 1,607 2,274 6,977 12,926 11,556
4.	
 Improper	
 Usage 370 638 3,305 3,762 6,148 7,334 8,372
5.	
 Scans/Probes/Attempted	
 Access 976 1,388 1,661 1,272 1,152 69,832 66,057
6.	
 Under	
 Investigation 82 912 4,056 7,502 10,826 11,534 13,601

0

10000

20000

30000

40000

50000

60000

70000

80000

N
um

be
r	
 o

f	
 I
nc
id
en

ts
	
 R
ep

or
te
d	

by
	
 F
ed

er
al
	
 A
ge
nc
ie
s

Security	
 Incidents	
 -­‐ FY'05	
 to	
 FY'11

What happened
here?

0

10000

20000

30000

40000

50000

60000

70000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

#	
 of	
 Vulnerabilities/year Total	
 #	
 of	
 Vulnerabilities	
 in	
 NVD

•  The software flaw statistics are also trending
upward…

•  According to an analysis by Software Engineering
Institute (SEI): “Most software security vulnerabilities
arise from common causes; more than 90 percent are
caused by known software defect types.” Where the
top 10 causes account for about 75 percent of all
vulnerabilities.

Introduction
Current State of Insecurity in COTS Software

- 5 -
* Source: National Vulnerability Database (http://nvd.nist.gov)

Introduction

2011 CWE/SANS Top 25 Most Dangerous Programming
Errors

Rank Score ID Name
[1] 93.8 CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
[2] 83.3 CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
[3] 79.0 CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
[4] 77.7 CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
[5] 76.9 CWE-306 Missing Authentication for Critical Function
[6] 76.8 CWE-862 Missing Authorization
[7] 75.0 CWE-798 Use of Hard-coded Credentials
[8] 75.0 CWE-311 Missing Encryption of Sensitive Data
[9] 74.0 CWE-434 Unrestricted Upload of File with Dangerous Type

[10] 73.8 CWE-807 Reliance on Untrusted Inputs in a Security Decision
[11] 73.1 CWE-250 Execution with Unnecessary Privileges
[12] 70.1 CWE-352 Cross-Site Request Forgery (CSRF)
[13] 69.3 CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
[14] 68.5 CWE-494 Download of Code Without Integrity Check
[15] 67.8 CWE-863 Incorrect Authorization
[16] 66.0 CWE-829 Inclusion of Functionality from Untrusted Control Sphere
[17] 65.5 CWE-732 Incorrect Permission Assignment for Critical Resource
[18] 64.6 CWE-676 Use of Potentially Dangerous Function
[19] 64.1 CWE-327 Use of a Broken or Risky Cryptographic Algorithm
[20] 62.4 CWE-131 Incorrect Calculation of Buffer Size
[21] 61.5 CWE-307 Improper Restriction of Excessive Authentication Attempts
[22] 61.1 CWE-601 URL Redirection to Untrusted Site ('Open Redirect')
[23] 61.0 CWE-134 Uncontrolled Format String
[24] 60.3 CWE-190 Integer Overflow or Wraparound
[25] 59.9 CWE-759 Use of a One-Way Hash without a Salt

- 6 - Reference: http://cwe.mitre.org/top25/

Introduction
Today’s problems are about same as yesterday’s

Open Web Application Security Project (OWASP) Top 10

2010 2013

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 à A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into à A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerability Components

A10 – Un-validated Redirects and Forwards A10 – Un-validated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

- 7 -

Source: OWASP Top Ten Project (https://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project)

- 8 -

Topics

Software Development Security Domain

•  Governance & Management
•  System Life Cycle and Security
•  Software Environment and Security Controls
•  Programming Languages
•  Database and DB Warehousing Vulnerabilities,

Threats, and Protections
•  Software Vulnerabilities and Threats

Governance & Management
Size Matters… (1/2)

Number of connections (or interfaces) = n * (n – 1) / 2

- 9 -
Reference: Code Complete: A Practical Handbook of Software Construction, 2nd Edition, 2004

Governance & Management
Size Matters… (2/2)

•  “As project size increases, errors usually come more
from requirements and design… (Boehm 1981,
Grady 1987, Jones 1998)”

- 10 -
Reference: Code Complete: A Practical Handbook of Software Construction, 2nd Edition, 2004

- 11 -

Governance & Management
Information Security Governance

•  Policy. Management directives that establish expectations
(goals & objectives), and assign roles & responsibilities.

•  Standards. Functional specific mandatory activities, actions,
and rules.

•  Procedure. Step-by-step implementation instructions.
•  Baseline (or Process). Mandatory description of how to

implement security packages to ensure consist security posture.
•  Guidelines. General statement, framework, or

recommendations to augment baselines or procedures.

Law, Regulations

Organizational
Policies

Functional
Implementation

Policies

Standards Process &
Procedure

Baselines
(/ Process) Guidelines

Law, Regulations

Executive Orders
DoD Directives
Joint Doctrines

DoD Instructions
DoD Agency

Policies & MOUs

Standards:
DoD Regulations

Process &
Procedure:
DITSCAP /

DIACAP
SIPRNet CAP

Baselines:
MAC Security

Controls

Guidelines:
DISA STIGs

NSA SNAC SCGs

Governance & Management
Clinger-Cohen Act of 1996 (CCA)

•  The Clinger-Cohen Act of 1996 (a.k.a. ITMRA)
defined the Federal agencies and DoD’s acquisition,
management, and usage of IT.

•  Key Elements
–  Defines the roles & responsibilities of Federal agencies and

their executives (i.e. directors and CIOs.)
–  Requires Federal agencies to implement performance and

result-based management for capital planning and
investment control (CPIC).

–  Defines the IT acquisition process.
–  Requires IT architecture be defined for all Federal agencies.

(i.e. Federal Enterprise Architecture (FEA)).

- 12 -

In 1992, GAO reported: “Defense’s mission-critical systems
continue to have significant software development problems.
Numerous GAO reports and Defense studies have identified
many problems, including a lack of management attention, ill-
defined system requirements, and inadequate testing. The
highly complex nature of mission-critical systems and millions
of lines of software required to support them contribute to the
continuation of serious software development problems.”
E.g., *

–  Cheyenne Mountain Upgrade (CMU), etc.
–  Strategic Defense Initiative (SDI)
–  Patriot surface-to-air missile system (Patriot)
–  Army Tactical Command and Control System (ATCCS)
–  AN/BSY-2 combat system for SSN-21 Seawolf submarine

(BSY-2)
–  AN/FQ-93 computer for the North American Aerospace Defense

Command
–  C-17 transport aircraft
–  F-14D Tomcat fighter aircraft, etc.

Governance & Management
Why CCA (/ ITMRA) necessary?

- 13 -

Reference:
* GAO/IMTEC-93-13, Defense Attempting to Address Major Software Challenges, December 24, 1992

- 14 -

Governance & Management

Federal Enterprise Architecture (FEA) Framework

•  Federal Enterprise Architecture Framework (FEAF)
focuses on BUSINESS

Reference: Federal Enterprise Architecture Consolidated Reference Model, May 2005

•  Control Objectives for Information and related Technology
(COBIT) is an IT Governance Framework created by
Information Systems Audit and Control Association
(ISACA)

•  COBIT controls can encompass:
–  Information security controls (e.g., NIST SP 800-53, CNSS

1253, ISO/IEC 27001:2005)
–  IT processes management frameworks (e.g., ITIL, CMMI, ISO/

IEC 27000 IT Service Management, PMBOK)
•  COBIT governance is composed of

5 focus areas:
–  Strategic alignment
–  Value delivery
–  Resource management
–  Risk management
–  Performance measurement

Governance & Management
COBIT Governance Framework

Reference: COBIT 4.1 (http://www.isaca.org/) - 15 -

Governance & Management
Augment IT Governance with Information Security

•  Information security is an ubiquitous practice…

InfoSec Controls:
•  Management
•  Operational
•  Technical

Interrelationship of
COBIT Components…

Reference: COBIT 4.1 (http://www.isaca.org/) - 16 -

System Life Cycle (SLC) and System Development Life Cycle (SDLC)
ISO/IEC 12207:2008, Software Life Cycle Processes

- 17 -

R
ef

er
en

ce
: I

E
E

E
/IE

C
 1

22
07

:2
00

8,
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

 S
of

tw
ar

e
Li

fe
 C

yc
le

 P
ro

ce
ss

es

*
N

ot
e:

 IS
O

/IE
C

 1
22

07
is

 id
en

tic
al

 to
 IE

E
E

 S
td

 1
22

07

Organizational
Project-Enabling

Processes

Agreement Processes Project Processes Technical Processes

Acquisition Process

Supply Process

Life Cycle Model
Management Process

Infrastructure
Management Process

Project Portfolio
Management Process

Human Resource
Management Process

Quality Management
Process

Project Planning
Process

Project Assessment
and Control Process

Decision Management
Process

Risk Management
Process

Configuration
Management Process

Information
Management Process

Management Process

Stakeholder
Requirements

Definition Process

Requirements Analysis
Process

Architecture Design
Process

Implementation
Process

Integration Process

Verification Process

Transition Process

Validation Process

Operation Process

Maintenance Process

Disposal Process

SW Implementation
Processes

Software
Implementation

Process

Software Requirements
Analysis Process

Software Architectural
Design Process

Software Detailed
Design Process

Software Construction
Process

Software Integration
Process

Software Qualification
Testing Process

Validation Process

SW Support
Processes

Software
Documentation

Process

Software Configuration
Management Process

Software Quality
Assurance Process

Software Verification
Process

Software Validation
Process

Software Review
Process

Software Audit Process

Software Problem
Resolution Process

Software Reuse Processes

Domain Engineering
Process

Reuse Asset
Management Process

Reuse Program
Management Process

System Context Processes Software Specific Processes

Governance & Management
Life Cycle Stages in Defense Acquisition System

- 18 - * Source: Integrated Life Cycle Chart (https://ilc.dau.mil/)

Governance & Management
Each Life Cycle Stage has Milestone & Review

- 19 -

Defense Acquisition Life Cycle (DoD 5000)

User needs &
Technology

Opportunities

Materiel
Solution
Analysis

Technology
Development Engineering & Manufacturing Development Production and

Deployment
Operations &

Support

ISO/IEC 15288/IEEE 1220 Systems and Software Engineering Life Cycle

Conceptual Design Preliminary
Design Detailed Design & Development Production

Construction
Utilization

System Support
Systems Engineering Life Cycle using Structured Analysis and Design Method

Concept Development Stage Engineering Development Stage Post Development Stage

Needs Analysis Concept
Exploration

Concept
Definition

Advanced
Development

Engineering
Design

Integration &
Evaluation Production Operations &

Support

Information Systems Security Engineering (ISSE) Life Cycle
Discover

Information
Protection Needs

Define
Requirements

Design System
Architecture

Develop Detailed System Design &
Security Controls

Implement System & Security
Controls

Continuous
Monitoring

Software Development: Rational Unified Process
Inception Elaboration Construction Transition

Business
Modeling Requirements Analysis & Design Implementation Deployment/CM

McGraw’s Software Security Touch Points

Requirements and Use Cases Architecture & Design Test
Plans Code Test & Test

Results Feedback From The Fields

System
Concept
Review
(SCR)

System
Requirements

Review
(SRR)

Preliminary
Design
Review
(PDR)

Critical
Design
Review
(CDR)

Test
Readiness

Review
(TRR)

Deployment
Readiness

Review
(DRR)

Operations
Readiness

Review
(ORR)

Typical
Decision

Gates

System
Certification

System Security
Authorization

Security Test &
Evaluation (ST&E)

Typical C&A
Decision Gates

Focus on software
structural defects

Focus on software
weaknesses

•  By Development Stage, 85% of LCC has already
been committed.*

•  Ratio of structural/design defects (flaws) vs.
implementation weaknesses (bugs) is 50:50.**

•  If structural/design flaws have not been discovered,
mitigating them will add 20 to 100 times to the plan
cost. (And up to 1000 x in
Production/Test Stage.)*

•  Running source code analysis
tools doesn’t help, because
they are mostly for finding
implementation weaknesses.**

Governance & Management

Governance & SE reduces Acquisition Risks

- 20 -

C
um

ul
at

iv
e

%
 L

ife
 C

yc
le

 C
os

t (
LC

C
) a

ga
in

st
 T

im
e

8%
15%

20%

50%

100%

Committed Life Cycle Cost (LCC) against Time

Concept

Design
Develop

Prod/Test

Operations
Through
Disposal

Reference:
* INCOSE Systems Engineering Handbook, Version 3.2, 2010.
** G. McGraw, Software Security: Building Security In, Addison-Westley Professional,

2006. (ISBN: 978-0321356703)

70% Committed
Costs

85% Committed
Costs

95% Committed
Costs

Cos
t t

o E
xtr

ac
t D

efe
cts

3 – 6 X

20 – 100 X

500 – 1000 X

Governance & Management
Capability Maturity Model (CMM) – History

In 1986, Software Engineering
Institute (SEI) and MITRE
began developing an
assessment framework for
measuring the maturity of an
organization’s [system/]
software engineering process.

–  Process capability describes
expected results.

–  Process performance
represents the actual results
achieved.

–  Process maturity is the degree
which a process is explicitly
defined, managed, measured,
controlled, and effective.

- 21 -

* Reference: M. Paulk, et al, The Capability Maturity Model: Guidelines for Improving the Software Process,
Addison-Wesley, 1995. (ISBN: 0-201-54664-7)

bbd [Structure] CMM

Contains

Contains

Indicate «dataType»
Maturity Level

«dataType»
Key Process
Areas (KPA)

Organized by

«dataType»
Common
Features

«dataType»
Key Practices

«unit»
1, 2, 3, 4, 5

«valueType»
Process Capability

«unit»
Goal 1 - n

«valueType»
Goals

«unit»
Ability 1 - n

«valueType»
Implementation/

Institutionalization

«unit»
Activity 1 - n

«valueType»
Activities/

Infrastructure

Achieve

Address

Describe

- 22 -

Governance & Management

Software Capability Maturity Model (SW-CMM)

•  Level 1: Initial
–  The software development process is characterized as ad-

hoc. Success depends on individual effort and heroics.

•  Level 2: Repeatable
–  Basic project management (PM) processes are established

to track performance, cost, and schedule.

•  Level 3: Defined
–  Tailored software engineering and development processes

are documented and used across the organization.

•  Level 4: Managed
–  Detailed measures of product and process improvement are

quantitatively controlled.

•  Level 5: Optimizing
–  Continuous process improvement is institutionalized.

Governance & Management

ISO/IEC 21827: SSE-CMM …(1/2)

•  System Security Engineering – Capability Maturity
Model (SSE-CMM)

- 23 -

0
Not

Performed

1
Performed
Informally

2
Planned &
Tracked

3
Well

Defined

4
Qualitatively
Controlled

5
Continuously

Improving

·∙ Base practices performed ·∙ Committing to perform
·∙ Planning performance
·∙ Tracking performance
·∙ Verifying performance

·∙ Defining a standard
process

·∙ Tailoring standard process
·∙ Using data
·∙ Perform a defined process

·∙ Establishing measurable
quality goals

·∙ Determining process
capability to achieve goals

·∙ Objectively managing
performance

·∙ Establishing quantitative
process effectiveness goals

·∙ Improving process
effectiveness

Governance & Management
ISO/IEC 21827: SSE-CMM …(2/2)

•  Security Base Practices
–  Administer Security Controls
–  Assess Impact
–  Assess Security Risk
–  Assess Threat
–  Assess Vulnerability
–  Build Assurance Argument
–  Coordinate Security
–  Monitor Security Posture
–  Provide Security Input
–  Specify Security Needs
–  Verify & Validate Security

•  Project & Organizational Base Practices
–  Ensure Quality
–  Manage Configuration
–  Manage Project Risks
–  Monitor & Control Technical Effort
–  Plan Technical Effort
–  Define Organization’s SE Process
–  Improve Organization’s SE Process
–  Manage Product Line Evolution
–  Manage SE Support Environment
–  Provide Ongoing Skills & Knowledge
–  Coordinate with Suppliers

- 24 -

•  SSE-CMM is composed of two domains:
–  Security Base Practice (11 x Process Areas)
–  Project & Organizational Base Practice (11 x Process Areas)

- 25 -

Governance & Management

Measure of Effectiveness – Assurance Requirements

Information Security Requirements

Functional
Requirements
For defining security
behavior of the IT
product or system.

Assurance
Requirements
For establishing
confidence that the
security function will
perform as intended.

•  Meeting the assurance
requirements is a part of “due
diligence” processes.
–  Example:
SC-3: Security Function Isolation. The
information system isolates security
functions from non-security functions.

•  Meeting the functional
requirements is a part of “due
care” processes.
–  Example:
•  VLAN technology shall be created

to partition the network into multiple
mission-specific security domains.

•  The integrity of the internetworking
architecture shall be preserved by
the access control list (ACL).

- 26 -

Governance & Management

Assurance Requirements – Federal Agencies

R
ef

er
en

ce
: N

IS
T

S
P

80
0-

53
, R

ev
 3

, R
ec

om
m

en
de

d
S

ec
ur

ity
 C

on
tro

ls
 fo

r F
ed

er
al

In

fo
rm

at
io

n
S

ys
te

m
s

CLASS FAMILY IDENTIFIER

Management

Risk Assessment RA

Planning PL

System and Services Acquisition SA

Certification, Accreditation, and Security Assessment CA

Program Management PM

Operational

Personnel Security PS

Physical and Environmental Protection PE

Contingency Planning CP

Configuration Management CM

Maintenance MA

System and Information Integrity SI

Media Protection MP

Incident Response IR

Awareness and Training AT

Technical

Identification and Authentication IA

Access Control AC

Audit and Accountability AU

System and Communications Protection SC

- 27 -

Governance & Management
Assurance Requirements – DoD

DoDI 8500.2, Information Assurance (IA) Implementation
•  Confidentiality Controls + Controls for Integrity &

Availability (i.e. Mission Assurance Category (MAC))

SUBJECT AREA NAME
E4.A1 (MAC I)
E4.A2 (MAC II)
E4.A3 (MAC III)

ABBREVIATION NUMBER OF
CONTROLS IN
SUBJECT AREA

Security Design &
Configuration

DC 31

Identification & Authentication IA 9
Enclave & Computing
Environment

EC 48

Enclave Boundary Defense EB 8
Physical & Environmental PE 27
Personnel PR 7
Continuity CO 24
Vulnerability & Incident
Management

VI 3

CONFIDENTIALITY
CONTROLS

INFORMATION
CLASSIFICATION

E4.A4 (High) Classified Information

E4.A5 (Medium) Sensitive Information

E4.A6 (Basic) Public Information

Governance & Management
Assurance Requirements – Industry
ISO/IEC 27001:2005, Information Technology – Security
Techniques – Security Management System – Requirements

- 28 -

CONTROL CATEGORY SUB-CATEGORY OF CONTROLS
Security Policy Information security policy

Organization of Information Security Internal organization; External parties

Asset Management Responsibility for assets; Information classification

Human Resource Security Prior to employment; During employment; Termination or change of employment

Physical and Environmental Security Secure areas; Equipment security

Communications and Operations
Management

Operational procedures and responsibilities; Third party service delivery management; System planning and
acceptance; Protection against malicious and mobile code; Back-up; Network security management; Media
handling; Exchange of information; Electronic commerce services; Monitoring

Access Control
Business requirement for access control; User access management; User responsibilities; Network access
control; Operating system access control; Application and information access control; Mobile computing and
teleworking

Information Systems Acquisition,
Development, and Maintenance

Security requirements of information systems; Correct processing in applications; Cryptographic controls;
Security of system files; Security in development and support processes; Technical vulnerability management

Information Security Incident
Management

Reporting information security events and weaknesses; Management of information security incidents and
improvements

Business Continuity Management Information security aspects of business continuity management

Compliance Compliance with legal requirements; Compliance with security policies and standards, and technical
compliance; Information system audit considerations

Governance & Management
Assurance Requirements – Credit Card Payment Industry
Payment Card Industry – Data Security Standard (PCI-DSS),
Requirements and Security Assessment Procedures,
Version 2.0, October 2010

- 29 -

Assessment Procedures Requirements

Build and Maintain a Secure Network Req. 1: Install and maintain a firewall configuration to protect cardholder data.
Req. 2: Do not use vendor-supplied defaults for system passwords and other security parameters.

Protect Cardholder Data Req. 3: Protect stored cardholder data.
Req. 4: Encrypt transmission of cardholder data across open, public networks.

Maintain a Vulnerability Management
Program

Req. 5: Use and regularly update anti-virus software or programs.
Req. 6: Develop and maintain secure systems and applications.

Implement Strong Access Control
Measures

Req. 7: Restrict access to cardholder data by business need to know.
Req. 8: Assign a unique ID to each person with computer access.
Req. 9: Restrict physical access to cardholder data.

Regular Monitor and Test Network Req. 10: Track and monitor all access to network resources and cardholder data.
Req. 11: Regular test security systems and processes.

Maintain an Information Security Policy Req. 12: Maintain a policy that addresses information security for all personnel.

Governance & Management
Assurance Requirements – Other PCI Security Standards

•  Payment Application Data Security Standard (PA-
DSS) Requirement and Security Assessment
Procedure, Version 2.0, October 2010

•  Payment Card Industry PIN Transaction Security
(PCI PTS)
–  PIN Security Requirements, Version 1.0, September 2011.
–  Hardware Security Module (HSM), Version 1.0, April 2009.
–  Point of Interaction (POI) Modular Security Requirements,

Version 3.1, October 2011.

•  Payment Card Industry Point-to-Point Encryption
(PCI P2PE)
–  P2PE Hardware Solution Requirements and Testing

Procedures, April 2012.

- 30 - Reference: PCI Security Standards Council, (https://www.pcisecuritystandards.org/)

- 31 -

Topics

Software Development Security Domain

•  Governance & Management
•  System/Software Life Cycle and Security
•  Software Environment and Security Controls
•  Programming Languages
•  Database and DB Warehousing Vulnerabilities,

Threats, and Protections
•  Software Vulnerabilities and Threats

- 32 -

System/Software Development Life Cycle (SDLC)

System Development Life Cycle (SDLC) Models and
Processes

•  Waterfall Development Models
–  Waterfall: DoD-STD-2167A (replaced by MIL-STD-498 on

11/1994).
–  Modified Waterfall: MIL-STD-498 (cancelled on 5/1998)

•  Iterative Development Models
–  Boehm’s Spiral Model.
–  Rapid Application Development (RAD) & Joint Application

Development (JAD)

•  SDLC Processes
–  ISO/IEC 12207, Software Life Cycle Processes (IEEE/EIA

12207 US implementation) (based on MIL-STD-499B)
–  ISO/IEC 15288, Systems Engineering – System Life Cycle

Processes (IEEE std 1220 – 2005, US implementation)

- 33 -

System/Software Development Life Cycle (SDLC)

Waterfall Development Models
•  Classic Waterfall:

DoD-STD-2167A

Requirements

Design

Implementation

Verification

Maintenance

Requirements

Design

Implementation

Verification

Maintenance

•  Modified Waterfall:
MIL-STD-498

System/System Development Life Cycle (SDLC)
Other SDLC Models – Modified Waterfall w/ Subprojects

- 34 -

Concept	

Development

Requirements	

Analysis

Architecture	
 Design

System	
 Testing

Deployment

Detailed	

Design

Coding	
 and	

Debugging

Subsystem	

Testing

Detailed	

Design

Coding	
 and	

Debugging

Subsystem	

Testing

Detailed	

Design

Coding	
 and	

Debugging

Subsystem	

Testing

Reference: Rapid Development: Taming Wild Software Schedules, Steve McConnell,
Microsoft Press, 1996

- 35 -

System/Software Development Life Cycle (SDLC)

Boehm’s Spiral Model

Reference: http://csse.usc.edu/people/barry.html

System/Software Development Life Cycle (SDLC)
Rapid Application Development (RAD) Model

- 36 -

•  Iterative, but spiral cycles are much smaller.
•  Risk-based approach, but focus on “good enough”

outcome.
•  SDLC fundamentals still apply…

–  Requirements, configuration, and quality management,
design process, coding, test & integration, technical and
project reviews etc.

R
ef

er
en

ce
:

- 
S

. M
cC

on
ne

l,
R

ap
id

 D
ev

el
op

m
en

t:
Ta

m
in

g
W

ild
 S

of
tw

ar
e

S
ch

ed
ul

es

- 
ht

tp
://

w
w

w
.c

s.
bg

su
.e

du
/m

an
er

/d
om

ai
ns

/R
A

D
.h

tm

System/System Development Life Cycle (SDLC)
Evolutionary Prototyping Model

•  The system concept is refined continuously…
–  The focus is on “good enough” concept, requirements, and

prototype.
–  However, it is difficult to determine level of effort (LOE), cost,

and schedule.

- 37 -

Initial	
 Concept Design	
 and	

implement	
 initial	

prototype

Refine	
 prototype	

until	
 acceptable

Complete	
 and	

release	
 prototype

Reference: Rapid Development: Taming Wild Software Schedules, Steve McConnell, Microsoft Press, 1996

System/Software Development Life Cycle (SDLC)
Incremental Commitment Model

- 38 -

Reference: B. Boehm, J.A. Lane, Using the Incremental Commitment Model to Integrate System Acquisition,
Systems Engineering, and Software Engineering, CrossTalk, October 2007.

System/Software Development Life Cycle (SDLC)
The need for speed... Agile Development Approach

- 39 -

Project Terms Agile Terms

MNS Vision

CONOPS User Stories

SDP Release & Iteration
Plans, Backlogs

PMR/MS Reviews Retrospectives,
Product Demo

pkg [SE Deliverables] Traceability

Mission Needs
(Product Vision)

CONOPS
(User Stories)

Operational
Req’ts (Product

Backlog)

Functional
Req’ts (Sprint

Backlogs)

Design Specs.
(Design

Patterns)

Functional
Components

Subsystems

System

System in I&T/
Operating

Environment

System in
Operating

Environment

«Elicitation»

«Realization»

«Realization»

«Realization»

«Realization»

«Contains»

«Contains»

«Deploy»

«Deploy»

«Elaboration»

«Elaboration»

«Elaboration»

«Realization»

Unit Test (Build/
Test)

System
Integration Test
(Demonstration)

System Test
(Demonstration)

Qualification
Test

(Demonstration)

Field Test

«Verification»

«Verification»

«Verification»

«Verification»

«Validation»

«Validation»

«Validation»

«Validation»

«Verification»

Agile practices
applied in all SE
activities

Agile practices applied in
all software development &
test activities

Appropriate level of
System Architecture &
Detailed Design

«Validation»

System/System Development Life Cycle (SDLC)
Agile SDLC Model – Scrum

•  Scrum is an agile software development methodology
and model that is both iterative and incremental.

•  The concept derived from the development of
commercial products, where:
–  Product owner provides the vision and roadmap;
–  Scrum master specifies activities and ensures deliverables

meet the sprint and iteration goals;
–  Team executes the specified scrum activities.

•  The process is executed in a series of “time-boxed”
sprints and iterations, where:
–  A “sprint” is usually 2 to 4 weeks; and
–  The end-product is a “iteration”.

- 40 -

Reference:
•  T. Hirotaka, N. Ikujiro, The New Product Development Game, Harvard Business Review, January, 1986. (http://hbr.org/product/

new-new-product-development-game/an/86116-PDF-ENG)
•  J. Sutherland, Agile Development: Lessons Learned from the First Scrum, 2004-10. (http://www.scrumalliance.org/resources/35)
•  R. Carlson, P.J. Matuzic, R.L. Simons, Applying Scrum to Stabilize Systems Engineering Execution, CrossTalk, May/June 2012.

System/System Development Life Cycle (SDLC)
Agile SDLC Model – Scrum

–  The product vision is translated
into a list of project requirements;

–  This “list” is called the product
backlog. It encompasses
all the project requirements
and work;

–  The scrum master works with the product owner to plan and
divide the product backlog into a series of sprint backlog.

–  The self-organized team composed of domain and SMEs. The
team is empowered to select, plan, and make decisions on its
work task

–  The daily stand-up team meeting is called the daily-scrum. It
keeps the team members focused on their tasks. Both product
owner and scrum master are required to participate.

- 41 -

Reference:
•  R. Carlson, P.J. Matuzic, R.L. Simons, Applying Scrum to Stabilize Systems Engineering Execution, CrossTalk, May/June 2012.

System/System Development Life Cycle (SDLC)
Are there other SDLC models?

DevOps*
•  Idea observed from cloud computing...
•  2009, Flickr reported doing 10 deployments per day
•  Amazon EC2 reported in May 2011:**

–  Mean time between deployments: 11.6 seconds
–  Maximum # of deployments in an hour: 1,079
–  Mean # of hosts can simultaneously receive a deployment:

10k
–  Maximum # of hosts can simultaneously receive a

deployment: 30k

–  http://youtu.be/o7-IuYS0iSE ***

- 42 -

Reference:
* J. Gorman, G. Kim, Security is Dead. Long Live Rugged DevOps: IT at Ludicrous Speed, RSA Conference 2012
(http://www.slideshare.net/realgenekim/security-is-dead-long-live-rugged-devops-it-at-ludicrous-speed)
** Jon Jenkins, Velocity Culture, O’Reilly Velocity 2011, (http://www.youtube.com/watch?v=dxk8b9rSKOo)
*** D. Edwards, The (Short) History of DevOps, Sept. 17, 2012. (http://youtu.be/o7-IuYS0iSE)

System/System Development Life Cycle (SDLC)
Philosophy behind the Rugged DevOps

•  Seamless integration of software development and IT
operations

•  Focus on the “big picture” rather than security
controls
–  Standard configuration
–  Process discipline
–  Controlled access to production systems

•  Results
–  75% reduction in outages triggered by software deployment

since 2006
–  90% reduction in outage minutes triggered by software

deployments
–  Instantaneous automated rollback
–  Reduction in complexity

•  Back to our study...

- 43 -

Reference:
•  Jon Jenkins, Velocity Culture, O’Reilly Velocity 2011, (http://www.youtube.com/watch?v=dxk8b9rSKOo)

System/Software Development Life Cycle (SDLC)

History of Systems/Software Engineering Process
Standards

- 44 -

pkg [History] Systems Engineering Standards

MIL-STD 499
(1969)

MIL-STD 499A
(1974)

MIL-STD 499B
(1994)

EIA/IS 632
(Interim)
(1994)

IEEE 1220
(1994)

IEEE 1220
(1998 - 2005)

ANSI/EIA 632
(1998)

EIA/IS 731 SE
Capab. Model

(1998)

INCOSE SE
Handbook

(2000 - 2010)

ISO/IEC 15288
(2002 - 2008)

NAVAIR SE
Guide
(2003)

DOD-STD 1703
(1987)

DOD-STD 2167A
(1988)

DOD-STD 7935A
(1988)

MIL-STD 498
(1994)

ISO/IEC 12207
(1995)

IEEE 1498/
EIA 640 (Draft)

(1995)

ISO/IEC 12207
(1996 - 2008)

EIA/IEEE J-STD
016 (Interim)

(1995)

Systems Engineering

Software Engineering

<<Based on>>

<<Referenced in>>

System/Software Development Life Cycle (SDLC)
Software & System Engineering Management Processes

•  There are more and more “software-intensive”
systems…
–  Systems are getting more complex. Hardware problems are

often addressed through software;
–  Operating environments are stochastic. Software are more

flexible than hardware.

•  As SDLC models evolves, management processes
are evolving too…
–  DoD-STD-2167A: Waterfall SDLC + SE Process
–  MIL-STD-498: Modified Waterfall SDLC + SE Process
–  IEEE 1220: System Engineering Process
–  ISO 12207: Software + System Engineering Mgmt. Process
–  ISO 15288: System Engineering Mgmt. Process

- 45 -

- 46 -

System/Software Development Life Cycle (SDLC)

DoD-STD-2167A – System Engineering Process

Project

System

Software

Process
Implementation

Software
Requirements

Analysis

Software
Installation

Software
Acceptance

Support

System
Requirements

Analysis

System
Architecture

Design

System
Integration

System
Qualification

Testing

Software
Architectural

Design

Software Detailed
Design

Software Coding
& Testing

Software
Integration

Software
Qualification

Testing

Reference: DoD-STD-2167A, Defense System Software Development, February 29, 1988

System/System Development Life Cycle (SDLC)
Everything must be traceable

•  Verification: “The process of evaluating a system or component
to determine whether the products of a given development
phase satisfy the conditions imposed at the start of that phase.”

•  Validation: “Confirmation, through the provision of objective
evidence, that the requirements for a specific intended use or
application have been fulfilled.”

- 47 -

R
ef

er
en

ce
: I

S
O

/IE
C

/IE
E

E
 2

47
65

:2
01

0,
 S

ys
te

m
s

an
d

S
of

tw
ar

e
E

ng
in

ee
rin

g
- V

oc
ab

ul
ar

y,

1s
t E

d.
 D

ec
em

be
r 1

5,
 2

01
0.

pkg [SE Deliverables] Traceability

Mission Needs
(Product Vision)

CONOPS
(User Stories)

Operational
Req’ts (Product

Backlog)

Functional
Req’ts (Sprint

Backlogs)

Design Specs.
(Design

Patterns)

Functional
Components

Subsystems

System

System in I&T/
Operating

Environment

System in
Operating

Environment

«Elicitation»

«Realization»

«Realization»

«Realization»

«Realization»

«Contains»

«Contains»

«Deploy»

«Deploy»

«Elaboration»

«Elaboration»

«Elaboration»

«Realization»

Unit Test (Build/
Test)

System
Integration Test
(Demonstration)

System Test
(Demonstration)

Qualification
Test

(Demonstration)

Field Test

«Verification»

«Verification»

«Verification»

«Verification»

«Validation»

«Validation»

«Validation»

«Validation»

«Verification»

Agile practices
applied in all SE
activities

Agile practices applied in
all software development &
test activities

Appropriate level of
System Architecture &
Detailed Design

«Validation»

System/Software Development Life Cycle (SDLC)
ISO/IEC 15288:2008, System Life Cycle Processes

•  ISO/IEC 15288*
encompasses:
–  Systems/software

engineering processes
(Technical Processes)

–  Project management
processes

–  Project support
infrastructure
(Organizational Project-
Enabling Processes)

–  Contract/business
management processes
(Agreement Processes)

* Note: ISO/IEC 15288 is identical to IEEE Std 15288

- 48 -

Organizational
Project-Enabling

Processes

Agreement Processes Project Processes Technical Processes

Acquisition Process

Supply Process

Life Cycle Model
Management Process

Infrastructure
Management Process

Project Portfolio
Management Process

Human Resource
Management Process

Quality Management
Process

Project Planning
Process

Project Assessment
and Control Process

Decision Management
Process

Risk Management
Process

Configuration
Management Process

Information
Management Process

Management Process

Stakeholder
Requirements

Definition Process

Requirements Analysis
Process

Architecture Design
Process

Implementation
Process

Integration Process

Verification Process

Transition Process

Validation Process

Operation Process

Maintenance Process

Disposal Process

System/Software Development Life Cycle (SDLC)
ISO/IEC 12207:2008, Software Life Cycle Processes

- 49 -

Organizational
Project-Enabling

Processes

Agreement Processes Project Processes Technical Processes

Acquisition Process

Supply Process

Life Cycle Model
Management Process

Infrastructure
Management Process

Project Portfolio
Management Process

Human Resource
Management Process

Quality Management
Process

Project Planning
Process

Project Assessment
and Control Process

Decision Management
Process

Risk Management
Process

Configuration
Management Process

Information
Management Process

Management Process

Stakeholder
Requirements

Definition Process

Requirements Analysis
Process

Architecture Design
Process

Implementation
Process

Integration Process

Verification Process

Transition Process

Validation Process

Operation Process

Maintenance Process

Disposal Process

SW Implementation
Processes

Software
Implementation

Process

Software Requirements
Analysis Process

Software Architectural
Design Process

Software Detailed
Design Process

Software Construction
Process

Software Integration
Process

Software Qualification
Testing Process

Validation Process

SW Support
Processes

Software
Documentation

Process

Software Configuration
Management Process

Software Quality
Assurance Process

Software Verification
Process

Software Validation
Process

Software Review
Process

Software Audit Process

Software Problem
Resolution Process

Software Reuse Processes

Domain Engineering
Process

Reuse Asset
Management Process

Reuse Program
Management Process

System Context Processes Software Specific Processes

R
ef

er
en

ce
: I

E
E

E
/IE

C
 1

22
07

:2
00

8,
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

 S
of

tw
ar

e
Li

fe
 C

yc
le

 P
ro

ce
ss

es

*
N

ot
e:

 IS
O

/IE
C

 1
22

07
is

 id
en

tic
al

 to
 IE

E
E

 S
td

 1
22

07

System/Software Development Life Cycle (SDLC)
IEEE std 1220, System Engineering Process

- 50 -

Concept Stage Development
Stage

Production
Stage Support Stage Disposal

Stage

System
Definition

Preliminary
Design

Detailed
Design

Fabrication
Assembly,
Integration

& Test
(FAIT)

IEEE 1220: System Life Cycle (SLC)

- 51 -

Requirements
Analysis

Requirements
Assessment

Requirements Baseline

Requirements
Verification

Functional
Assessment

Validated
Requirements Baseline

Functional Analysis

Design Assessment

Functional Architecture

Functional Verification
Verified Functional

Architecture

Synthesis
Physical Architecture

Design Verification
Verified Physical

Architecture

Inputs:
CONOPS

System Context
System

Requirements

Requirement and constrain
conflicts

Requirement trade-offs and
impacts

Decomposition and
requirement allocation
alternatives

Decomposition / allocation
trade-offs and impacts

Design solution
requirements and
alternatives

Design solution trade-offs
and impacts

Output

Output

Output

Output

Output

Output

Input

Input

Input

Input

Input

Input

Process
Inputs

Output:
System

Development
Specification

Concept Stage Development
Stage

Production
Stage Support Stage Disposal

Stage

System
Definition

Preliminary
Design

Detailed
Design

Fabrication
Assembly,
Integration

& Test
(FAIT)

System Engineering Process (SEP)

IEEE 1220: System Life Cycle (SLC)

System/Software Development Life Cycle (SDLC)

IEEE std 1220: System Engineering Process (SEP)

•  IEEE 1220 defined System
Engineering Process (SEP)
within System Life Cycle
(SLC)

Reference: IEEE STD 1220: Standard for Application and Management of the
Systems Engineering Process

System/Software Development Life Cycle (SDLC)
Introducing Security into SDLC

- 52 -

Defense Acquisition Life Cycle (DoD 5000)

User needs &
Technology

Opportunities

Materiel
Solution
Analysis

Technology
Development Engineering & Manufacturing Development Production and

Deployment
Operations &

Support

ISO/IEC 15288 Systems and Software Engineering Life Cycle

Conceptual Design Preliminary
Design Detailed Design & Development Production

Construction
Utilization

System Support
Systems Engineering Life Cycle using Structured Analysis and Design Method

Concept Development Stage Engineering Development Stage Post Development Stage

Needs Analysis Concept
Exploration

Concept
Definition

Advanced
Development

Engineering
Design

Integration &
Evaluation Production Operations &

Support

Information Systems Security Engineering (ISSE) Life Cycle
Discover

Information
Protection Needs

Define
Requirements

Design System
Architecture

Develop Detailed System Design &
Security Controls

Implement System & Security
Controls

Continuous
Monitoring

Software Development: Rational Unified Process
Inception Elaboration Construction Transition

Business
Modeling Requirements Analysis & Design Implementation Deployment/CM

McGraw’s Software Security Touch Points

Requirements and Use Cases Architecture & Design Test
Plans Code Test & Test

Results Feedback From The Fields

System
Concept
Review
(SCR)

System
Requirements

Review
(SRR)

Preliminary
Design
Review
(PDR)

Critical
Design
Review
(CDR)

Test
Readiness

Review
(TRR)

Deployment
Readiness

Review
(DRR)

Operations
Readiness

Review
(ORR)

Typical
Decision

Gates

System
Certification

System
Accreditation

Security Test &
Evaluation

(ST&E)

Typical C&A
Decision Gates

Focus on software
structural defects

Focus on software
weaknesses

- 53 -

System/Software Development Life Cycle (SDLC)

Security Considerations in SDLC

1.  Initiation Phase (IEEE 1220: Concept Stage)

–  Survey & understand the policies, standards, and guidelines.
–  Identify information assets (tangible & intangible).
–  Define information classification & protection level (security

categorization).
–  Define rules of behavior & security CONOPs.
–  Conduct preliminary risk assessment.

2.  Acquisition / Development Phase (IEEE 1220: Development Stage)
–  Conduct risk assessment.
–  Define security requirements and select security controls

(categories & types).
–  Perform cost/benefit analysis (CBA).
–  Security planning (based on risks & CBA).
–  Practice Information Systems Security Engineering (ISSE)

Process to develop security controls.
–  Develop security test & evaluation (ST&E) plan for verification

& validation of security controls.
Reference: NIST SP 800-64 Security Considerations in the Information
System Development Life Cycle.

- 54 -

System/Software Development Life Cycle (SDLC)

Security Considerations in SDLC
3.  Implementation Phase (IEEE 1220: Production Stage)

–  Implement security controls in accordance with system
security plan (SSP).

–  Perform Security Certification & Accreditation of target system.
4.  Operations / Maintenance Phase (IEEE 1220: Support Stage)

–  Configuration management & perform change control.
–  Continuous monitoring – Perform periodic security

assessment.
5.  Disposition Phase (IEEE 1220: Disposal Stage)

–  Preserve information. archive and store electronic information
–  Sanitize media. Ensure the electronic data stored in the

disposed media are deleted, erased, and over-written
–  Dispose hardware. Ensure all electronic data resident in

hardware are deleted, erased, and over-written (i.e. EPROM,
BIOS, etc.)

Reference: NIST SP 800-64 Security Considerations in the Information
System Development Life Cycle.

- 55 -

System/Software Development Life Cycle (SDLC)

Information Systems Security Engineering (ISSE) Process
•  Phase 1: Discover Information Protection Needs

–  Ascertain the system purpose.
–  Identify information asset needs protection.

•  Phase 2: Define System Security Requirements
–  Define requirements based on the protection needs.

•  Phase 3: Design System Security Architecture
–  Design system architecture to meet on

security requirements.
•  Phase 4: Develop Detailed Security Design

–  Based on security architecture, design
security functions and features for the system.

•  Phase 5: Implement System Security
–  Implement designed security functions and

features into the system.
•  Phase 6: Assess Security Effectiveness

–  Assess effectiveness of ISSE activities.

PHASE 1:
DISCOVER

NEEDS

PHASE 2:
DEFINE
SYSTEM

REQUIREMENTS

PHASE 3:
DESIGN
SYSTEM

ARCHITECTURE

PHASE 4:
DEVELOP
DETAILED
DESIGN

PHASE 5:
IMPLEMENT

SYSTEM

PHASE 6:
ASSESS EFFECTIVENESS

USERS/USERS’
REPRESENTATIVES

Reference: Information Assurance Technical Framework (IATF) Rel. 3.1

•  Key Deliverables
–  Mission Needs Statement / Project Goal(s) and

Objectives
–  System Capabilities
–  Preliminary CONOPS
–  Preliminary System Context Descriptions
–  Project Risk Assessment
–  Draft System Engineering Management Plan

(SEMP)
56

IEEE 1220
DoD
Acquisition
SDLC

Key System Engineering Tasks Key Security Engineering Tasks*

Concept
Stage

User Needs &
Technology
Opportunities

Task 1: Discover Mission/Business Needs Task 1: Discover Information Protection Needs
•  Understand customer’s mission/business goals (i.e., initial

capability, project risk assessment)
•  Understand customer’s information protection needs (i.e.,

infosec. risk assessment)

Concept
Refinement

•  Understand system concept of operations (CONOPS) •  Understand operating environment (i.e., sensitivity of
information assets, mode of operations)

•  Create high-level entity-data relations model (i.e., system
context diagram) •  Create information management model (IMM)

•  Define engineering project strategy and integrate into the
overall project strategy

•  Define information protection policy (IPP) and integrate into
the project strategy

•  Create system engineering management plan (SEMP) •  Create system security plan (SSP) and integrate into SEMP
Milestone A Task 6: Assess project performance in meeting mission/business needs

* Reference: Information Assurance Technical Framework (IATF), Release 3.1

PHASE 1:
DISCOVER

NEEDS

PHASE 2:
DEFINE
SYSTEM

REQUIREMENTS

PHASE 3:
DESIGN
SYSTEM

ARCHITECTURE

PHASE 4:
DEVELOP
DETAILED
DESIGN

PHASE 5:
IMPLEMENT

SYSTEM

PHASE 6:
ASSESS EFFECTIVENESS

USERS/USERS’
REPRESENTATIVES

System/Software Development Life Cycle (SDLC)
Security starts at the beginning…

57

IEEE 1220
DoD
Acquisition
SDLC

Key System Engineering Tasks Key Security Engineering Tasks

Development
Stage

Technology
Development

Task 2: Define System Requirements Task 2: Define Security Requirements
•  Refine system context (e.g., functional components)

•  Define system requirements (e.g., functional, performance,
operational, support, etc.)

•  Select assurance requirements and define security
functional requirements

•  Refine CONOPS •  Refine IMM and SSP
•  Baseline system requirements

Milestone B Task 6: Assess project performance in meeting mission/business needs

System
Development
&
Demonstration

Task 3: Design System Architecture Task 3: Design System Security Architecture
•  Determine & select architecture framework

•  Design system architecture and allocate system
requirements to subsystems and components (i.e., RTM)

•  Allocate system security requirements to subsystems and
service components (i.e., RTM)

•  Analyze gaps (i.e., risk assessment)
Task 4: Develop Detailed System Design (Logical &
Physical)

Task 4: Develop Detailed System Security Design (Logical
& Physical)

•  Refine entity-data relations model (i.e., UML diagrams,
data-flow, network, etc.)

•  Refine IMM, embed security controls into system design
products (i.e., UML, data-flow, network, etc.)

•  Perform system synthesis analysis to assure system integration (i.e., system design, system architecture, system
requirements, and project mission/business needs)

Milestone C Task 6: Assess project performance in meeting mission/business needs

•  Key Deliverables
–  System Requirements
–  Functional Definitions (+ allocation of system

requirements)
–  System Architecture (Contextual + Logical)
–  Detailed System Design (Logical + Physical)
–  Requirements Traceability Matrix (RTM)

PHASE 1:
DISCOVER

NEEDS

PHASE 2:
DEFINE
SYSTEM

REQUIREMENTS

PHASE 3:
DESIGN
SYSTEM

ARCHITECTURE

PHASE 4:
DEVELOP
DETAILED
DESIGN

PHASE 5:
IMPLEMENT

SYSTEM

PHASE 6:
ASSESS EFFECTIVENESS

USERS/USERS’
REPRESENTATIVES

58

IEEE 1220
DoD
Acquisition
SDLC

Key System Engineering Tasks Key Security Engineering Tasks

Production
Stage

Production
and
Deployment

Task 5: Implement System Design Task 5: Implement Security Controls
•  Procure system components / construct system

•  Code/ customize/ configure system functional components
•  Conduct code inspection/ walk-through/ unit test

•  Perform system integration
•  Conduct system test •  Conduct security test & evaluation (ST&E)

Task 6: Assess project performance in meeting mission/business needs
•  Generate system operations procedure (SOP) and users

guide/ manual
•  Generate SOP (a.k.a. trusted facility manual (TFM)),

Incident response plan, business continuity plan (BCP)
•  Conduct system readiness review •  Obtain system certification

•  Deploy system
•  Conduct system acceptance test •  Assess security effectiveness

•  Obtain approval to operate (ATO)

•  Key Deliverables
–  Implement detailed system design
–  Perform test & evaluations (unit, system, security

tests)
–  Test reports
–  Standard Operating Procedure (SOP) + User

Manuals
–  Deploy system
–  Conduct acceptance tests

PHASE 1:
DISCOVER

NEEDS

PHASE 2:
DEFINE
SYSTEM

REQUIREMENTS

PHASE 3:
DESIGN
SYSTEM

ARCHITECTURE

PHASE 4:
DEVELOP
DETAILED
DESIGN

PHASE 5:
IMPLEMENT

SYSTEM

PHASE 6:
ASSESS EFFECTIVENESS

USERS/USERS’
REPRESENTATIVES

System/Software Development Life Cycle (SDLC)
Rational Unified Process (RUP)

- 59 -
Reference: http://www.ibm.com/developerworks/webservices/library/ws-soa-term2/

System/Software Development Life Cycle (SDLC)
Rational Unified Process (RUP)

•  Use cases drives requirements (Business Needs/Concept Exploration)

–  System, software, and security engineers create operational use cases
(e.g., operational, functions, threat, risks models)

–  Use cases drives operational requirements
•  System design drives design specifications (Concept Definition/Detailed Design)

–  Operational requirements are decomposed into system functions and
functional requirements

–  Architecture organizes system functions allocation of functional
requirements

–  Architecture is further decomposed into detailed system design
–  Detailed system design is explained in design specifications

•  Design specifications drives programming of software codes
(Implementation/Coding/Integration/Testing)

–  Software components integrated into functional components/subsystems
(Unit Testing)

–  Functional subsystems integrated into system (/systems) (System Testing)
–  System perform functions that meets the operational needs (Acceptance

Testing)
•  Deployment/transition into operations - 60 -

Software Development: Rational Unified Process

Inception Elaboration Construction Transition
Business
Modeling Requirements Analysis & Design Implementation Deployment/CM

McGraw’s Software Security Touch Points

Requirements and Use Cases Architecture & Design Test
Plans Code Test & Test

Results Feedback From The Fields

System/Software Development Life Cycle (SDLC)
Integrated System/Security Engineering in RAD

- 61 -

1. Requirements
analysis

2. Functional
definition

3. Physical
definition

4. Design
validation

From preceding
phase

Objectives

Requirements

Functions

System model

To next phase

System
Architecture

System Design

Prototype

System
Requirements

Stakeholder review &
commitment

Evaluation of
evidence of feasibility
to proceed

Concurrent risk and
opportunity-driven
growth of system
understanding and
definition

Major Activities

·∙ 	
 Initial scoping
·∙ 	
 Concept definition
·∙ 	
 Investment analysis

·∙ 	
 System life cycle
architecture and
CONOPS

·∙ 	
 Build to increment
plans and
specifications

·∙ 	
 Develop Increment III
prototype

·∙ 	
 Exercise Increment III
prototype

·∙ 	
 Rebaseline system
features & capabilities

·∙ 	
 Develop Increment IV
prototype

·∙ 	
 Exercise Increment IV
prototype

·∙ 	
 Rebaseline system
features & capabilities
(if necessary)

·∙ 	
 Develop Increment V
prototype

·∙ 	
 Exercise Increment V
prototype

·∙ 	
 Transition into
operations

·∙ 	
 Plan for future release
(if necessary)

Incre
ment I:

Concep
t

Explorat
ion

Incre
ment II:

 Concep
t

Defin
itio

n
Incre

ment III
:

Truste
d VM &

Platf
orm Incre

ment IV
:

Proces
s W

orkf
low

Incre
ment V

:

Integ
rat

ion to CAM

Syst
em

OTBR Revi
ew

Foundatio
ns

Commitm
ent

Revi
ew Deve

lopment

Commitm
ent

Revi
ew Opera

tions

Commitm
ent

Revi
ew Opera

tions

Commitm
ent

Revi
ew

·∙ 	
 OTBR Package
·∙ 	
 Draft PIP

MS 1 MS 2 MS 3 MS 4 MS 5

·∙ 	
 Updated PIP
·∙ 	
 CONOPS
·∙ 	
 Conceptual

Architecture
·∙ 	
 System Reqs. &

Functional Specs.

·∙ 	
 Prototype
·∙ 	
 Updated PIP
·∙ 	
 Updated CONOPS
·∙ 	
 System Architecture
·∙ 	
 Updated System Reqs.

& Functional Specs.

·∙ 	
 Prototype
·∙ 	
 Updated PIP
·∙ 	
 System Design
·∙ 	
 Updated System Reqs.

& Functional Specs.

·∙ 	
 Prototype
·∙ 	
 Operational Transition

Plan
·∙ 	
 Updated System

Design Baseline
·∙ 	
 User features requests

Acceptable

Risk?

High, but
addressable

Negligible
Too high,
unaddressable

Risk? Risk? Risk?

Adjust scope, priorities, or discontinue

Questions:

•  What are the relationships between SDLC models
and SSE-CMM models?
–  SDLC describes… to a system acquisition project

–  SSE-CMM describes…

•  What are the relationships between security controls
models (NIST SP800-53, DoDI 8500.2, ISO/IEC
27001, etc.) and CMM/SSE-CMM models?
–  Security assurance requirements provide measurement of…

–  CMM utilizes the measurement metrics from security control

models to measure…

- 62 -

Answers:

•  What are the relationships between SDLC models
and SSE-CMM models?
–  SDLC describes the key engineering process to a system

acquisition project
–  SSE-CMM describes the key security and management

processes to a security engineering practice

•  What are the relationships between security controls
models (NIST SP800-53, DoDI 8500.2, ISO/IEC
27001, etc.) and CMM/SSE-CMM models?
–  Security assurance requirements provide measurements of

management, operational, and technical controls
–  CMM utilizes the measurement metrics from security control

models to measure practice maturity

- 63 -

- 64 -

Topics
Software Development Security Domain

•  Governance & Management
•  System Life Cycle and Security
•  Software Environment and Security Controls
•  Programming Languages
•  Database and DB Warehousing Vulnerabilities,

Threats, and Protections
•  Software Vulnerabilities and Threats

Software Environment and Security Controls
Review of Computer Operations Architecture Model

•  Reference monitor is a conceptual abstraction of a
“machine”, system, or software that mediates access
of objects by subjects.

•  Trusted computing base is a system of security
controls that meets the confidentiality and integrity
security objectives.

•  Secure kernel is a part of the trusted computing base
that implements reference monitor concept.

- 65 -

Reference: Secrets & Lies – Digital Security in a Networked World, Bruce
Schneier, Wiley Publishing, 2000

- 66 -

Software Environment and Security Controls
Reference Monitor

•  Reference monitor is performed by a reference
validation mechanism.

•  Reference validation mechanism is a system
composed of hardware and software.

•  Operating condition principles:
–  The reference validation mechanism must be tamper proof.
–  The reference validation mechanism must always be

invoked.
–  The reference validation mechanism must be small enough

to be subject to analysis and tests to assure that it is correct.

•  OS shall be evaluated at TCSEC B2 (i.e. structured
protection) and above.

- 67 -

Software Environment and Security Controls

Trusted Computing Base (TCB)

•  The Trusted Computing Base is the totality of
protection mechanisms within a computing system –
hardware, firmware, software, processes, transports

•  The TCB maintains the confidentiality and integrity of
each domain and monitors four basic functions:
–  Process activation
–  Execution domain switching
–  Memory protection
–  Input/output operation

Reference: DoD 5200.28-STD, Department of Defense Trusted Computer
System Evaluation Criteria (TCSEC), August 15, 1983

- 68 -

Software Environment and Security Controls
Secure Kernel

•  Secure kernel is an
implementation of a reference
monitoring mechanism responsible
for enforcing security policy.

•  It meets the following three (3)
conditions:
–  Completeness. All accesses to

information must go through the
kernel.

–  Isolation. The kernel itself must be
protected from any type of
unauthorized access.

–  Verifiability. The kernel must be
proven to meet design specifications.

In the kernel model, the inside layer
controls basic OS services, such as:
 - memory management,
 - security,
 - I/O,
 - request management, etc.

User applications, environment
subsystems, and subsystem DLLs
exist on the outer layers.

- 69 -

Software Environment and Security Controls
Processor Privilege States

•  Processor privilege states protect the processor
and the activities that it performs.

•  Privileged levels are called rings.

•  For example: Intel x86 has 4 privilege ring levels
–  Ring 0 contains kernel functions of the OS.
–  Ring 1 contains the OS.
–  Ring 2 contains the OS utilities.
–  Ring 3 contains the applications.

0
1
2
3

Ring 0
OS Kernel

Ring 3
Applications

Software Environment and Security Controls
Example of Processor Privilege States

VMware ESX
–  Hypervisor operates at Ring 0
–  Guest OS kernel and OS now

moved to Ring 1
–  OS utilities in Ring 2
–  Application in Ring 3

- 70 -

0
1
2
3

Ring	
 0
VMware	
 Hypervisor

Ring	
 3
Applications

Ring	
 2
OS	
 utilities

Ring	
 1
OS	
 Kernel	
 and	
 OS

Reference: VMware ESX I/O Driver Model (http://blogs.vmware.com/performance/2007/11/ten-reasons-why.html)

Software Environment and Security Controls
Same principles, but different technology thus different
attacks

•  Reference monitoring principles is consistent even
with virtualization: Violation of privilege
–  Hypervisor vulnerabilities. Attack of kernel (Ring 0)
–  Hypervisor escape vulnerabilities. Violation of isolation of

guest VMs (Ring 0)
–  Administrative VM vulnerabilities

•  Management server vulnerabilities.
Exploitation of virtualized system
configuration. (Ring 0)

•  Management console vulnerabilities.
Attacks of privileged state (Entire TCB)

–  Guest VM vulnerabilities. Exploitation of OS vulnerabilities,
but can potentially provide an attack vector to administrative
VM, hypervisor, then other guest VMs (Ring 3/Ring 2 à
Ring 1 à Ring 0)

- 71 - Reference: Virtual Reality (http://blogs.vmware.com/virtualreality/2008/06/)

Software Environment and Security Controls
Example of Processor Privilege States – Many-to-Many

•  VMware vSphere further abstracts the hardware layer
–  Virtual Machine File System (VMFS) for abstraction of data

storage
–  vNetwork Distributed Switch (vDS) for abstraction of network

layer
–  vMotion for distribution of processing power and high

availability

- 72 -

R
ef

er
en

ce
: h

ttp
://

pu
bs

.v
m

w
ar

e.
co

m
/v

sp
he

re
-4

-e
sx

-v
ce

nt
er

/in
de

x.
js

p?
to

pi
c=

/
co

m
.v

m
w

ar
e.

vs
ph

er
e.

in
tro

.d
oc

_4
1/

c_
vm

w
ar

e_
in

fra
st

ru
ct

ur
e_

in
tro

du
ct

io
n.

ht
m

l

Software Environment and Security Controls
More complexity, more attack surfaces - Examples

•  Hypervisor vulnerability:
–  CVE-2010-2070: Xen IA-64 architecture, allows local user to modify

processor status register that can cause DoS. (CVSS: 4.9 [Medium])
•  Hypervisor escape vulnerability:

–  CVE-2009-1244: VM display function in VMware allows guest OS user to
execute arbitrary code in hypervisor. (CVSS: 6.8 [Medium])

•  Administrative VM vulnerabilities:
–  CVE-2008-2097: Buffer overflow in VMware ESX management service that

allows remote authenticated users to gain root privileges. (CVSS: 9.0
[High])

–  CVE-2008-4281: Directory traversal in VMware ESXi that allows VM
administrators to gain elevated privileges. (CVSS: 9.3 [High])

–  CVE-2009-2277: Cross-site scripting (XSS) vulnerability in WebAccess in
VMware VirtualCenter that allows remote attacker to inject arbitrary web
script to steal “context data” such as authentication credentials (CVSS: 4.3
[Medium])

•  Guest VM vulnerabilities:
–  CVE-2011-2145: VMware Host Guest File System (HGFS) allows Solaris or

FreeBSD guest OS users to modify guest OS files. (CVSS: 6.3 [Medium])
–  CVE-2011-2217: ActiveX controls in Internet Explorer allows remote

attacker to execute arbitrary code or corrupt memory in VMware
Infrastructure. (CVSS: 9.3 [High])

- 73 -

Reference:
•  T. McNevin, Introduction to Hypervisor Vulnerabilities (Part 1), MITRE, 2009
•  B. Williams, T. Cross, Virtualization System Vulnerabilities, IBM X-Force, 2010
•  NVD (http://web.nvd.nist.gov/view/vuln/search)

- 74 -

Software Environment and Security Controls

Security Controls for Software Environment

•  For CISSP Exam, countermeasures are also called “security
controls”…
–  Security Controls for Buffer Overflows
–  Memory Protection
–  Covert Channel Controls
–  Cryptography
–  Password Protection Techniques
–  Inadequate Granularity of Controls
–  Control and Separation of Environments
–  Time of Check/Time of Use (TOC/TOU)
–  Social Engineering
–  Backup Controls
–  Malicious Code/Malware Controls
–  Virus Protection Controls
–  Mobile Code Controls
–  Sandbox
–  Programming Language Support
–  Access Controls

Reference: Official (ISC)2 Guide to The CISSP CBK, H. Tipton, et. al., (ISC)2
Press, Auerbach Publications, 2007.

- 75 -

Software Environment and Security Controls

Security Controls for Buffer Overflow

•  One of the oldest and most common problems to
software.

•  A buffer overflow occurs when a program or process
tries to store more data in a buffer (temporary data
storage area) than it was intended to hold.

•  Vulnerability is caused by lack of parameter checking or
enforcement for accuracy and consistency by the
software application or OS.

•  Countermeasure:
–  Practice good SDLC process (code inspection & walkthrough).
–  Programmer implementing parameter checks and enforce data

rules.
–  Apply patches for OS & applications.
–  If available, implement hardware states and controls for memory

protection.
–  Buffer management for OS.

- 76 -

Software Environment and Security Controls
Memory Protection

•  Memory protection is enforcement of access control
and privilege level to prevent unauthorized access to
OS memory.

•  Countermeasures:
–  Ensure all system-wide data structures and memory pools

used by kernel-mode system components can only be
accessed while in kernel mode.

–  Separate software processes, protect private address space
from other processes.

–  Hardware-controlled memory protection
–  Use Access Control List (ACL) to protect shared memory

objects.

- 77 -

Software Environment and Security Controls
Covert Channel Controls*

•  Covert channel is an un-controlled information flow
(or unauthorized information transfer) through hidden
communication path(s).
–  Storage channel
–  Timing channel

•  Countermeasure steps:
–  Identify potential covert channel(s)
–  Verify and validate existence of covert channel(s)
–  Close the covert channel by install patch or packet-filtering

security mechanism.

* Note: While the definition of covert channel may be old, it is considered as “fundamental” in CISSP CBK.

Reference: NCSC-TG-30, A Guide To Understanding Covert Channel Analysis of Trusted System

- 78 -

Software Environment and Security Controls
Covert Channel Controls*

•  Countermeasure for covert channel:
–  Information Flow Model is a variation of access control matrix
–  Information Flow Model is based on Object Security Levels.
–  Object-to-object information flow is constrained in accordance with

object’s security attributes.

Object A B C D E F G

A N/A X

B N/A X

C X N/A

D N/A X

E X N/A

F N/A X

G X N/A

- 79 -

Software Environment and Security Controls
Cryptography

•  Cryptography provides confidentiality, integrity,
authentication, and non-repudiation in information
operations.
–  Asymmetric Key Cryptography

–  Because of slow cipher operation speed, it is mostly used for
key management function.

–  Symmetric Key Cryptography
–  Because of speed, symmetric-key cryptosystems are used for

crypto. operations. E.g. SSL/TLS at Transport-level
(communication path), e-mail & SOAP messages at message-
level.

–  Hash Function
–  Message Digest
–  Message Authentication Code (MAC)
–  Key-hashed MAC (HMAC)

–  Digital Signature

- 80 -

Software Environment and Security Controls
Security Controls: Password Protection Techniques

•  Password Structure
–  Password length
–  Password complexity: a mix of upper/lowercase letters,

numbers, special characters
–  Not using common words found in dictionary

•  Password Maintenance
Set password lifetime limits & policy…
–  Password change in <90> days
–  Password can not be reused within <10> password changes
–  <One> change to <every 24 hr.>
–  Password file must be encrypted and access controlled.

- 81 -

Software Environment and Security Controls
Granularity of Controls

•  Separation of duties means that a process is
designed so that separate steps must be performed
by different people (i.e. force collusion)
–  Define elements of a process or work function.
–  Divide elements among different functions

•  Least privilege is a policy that limits both the system’s
user and processes to access only those resources
necessary to perform assigned functions.
–  Limit users and system processes to access only resources

necessary to perform assigned functions.

•  Separation of system environments.
–  Development environment.
–  QA/test environment.
–  Production or operational environment.

- 82 -

Software Environment and Security Controls
Other Security Controls

•  Social Engineering
–  Countermeasure: User security awareness training.

•  Backup, Malicious Code/Malware, Virus Protection
Controls
–  Countermeasures:

•  Install & use anti-virus system, H-IDS.
•  Enable access control to critical system files.
•  Tape backups, access control of media.
•  Encrypt sensitive information for confidentiality & integrity.

•  Mobile Code Controls
–  Install Sandbox for access control of mobile codes.
–  Example: Java “containers” or Java Virtual Machine (JVM).

•  Java applets running in Web browser.
•  Applications using Java Remote Method Invocation (RMI) to

run Java Beans.

- 83 -

Software Environment and Security Controls
Security Controls – Access Controls

•  Discretionary access control (DAC)
–  Information owner determines who has access & what

privileges they have.

•  Mandatory access control (MAC)
–  Information classification & system determine access.
–  Access decision based on privilege (clearance) of subject &

sensitivity (classification) of object (file).
–  Requires labeling (or data tag)

•  Access Control/Capability Matrix
–  Implement through the use of ACL.

•  View-based Access Control
–  Authorization of specific views by tables, columns, and key

sets.

Questions:

•  What are the three operating condition principles for a
reference monitor?
– 
– 
– 

•  What are the three operating conditions for a secure
kernel?
– 
– 
– 

- 84 -

Answers:

•  What are the three operating condition principles for a
reference monitor?
–  must be tamper proof
–  must always be invoked
–  subject to analysis and tests

•  What are the three operating conditions for a secure
kernel?
–  Completeness (must always be invoked)
–  Isolation (must be tamper proof)
–  Verifiability (each operations shall be subject to analysis and

tests)

- 85 -

Questions:

•  What causes buffer overflow?
– 

•  Why a good information flow model is a good tool for
supporting the identification of covert channel?
– 

- 86 -

Answers:

•  What causes buffer overflow?
–  When a program or process that lacks parameter

enforcement control tries to store more data in a buffer than
it was intended to hold

•  Why a good information flow model is a good tool for
supporting the identification of covert channel?
–  Information flow model is the system design baseline that

illustrates the directional vectors of information flow between
objects (e.g., programs or processes)

- 87 -

Questions:

•  Program that allows the information owner to
determine who has what type of access and privilege
is an implementation of what type of access control?
– 

•  For mandatory access control (MAC), an access
decision is based on privilege of ___ & sensitivity of
___?
– 
– 

- 88 -

Answers:

•  Program that allows the information owner to
determine who has what type of access and privilege
is an implementation of what type of access control?
–  Discretionary access control (DAC)

•  For mandatory access control (MAC), an access
decision is based on privilege of ___ & sensitivity of
___?
–  Subject
–  Object

- 89 -

- 90 -

Topics
Software Development Security Domain

•  Governance & Management
•  System Life Cycle and Security
•  Software Environment and Security Controls
•  Programming Languages
•  Database and DB Warehousing Vulnerabilities,

Threats, and Protections
•  Software Vulnerabilities and Threats

- 91 -

Programming Languages

•  A set of instructions and rules that tell the computer
what operations to perform.

•  Languages have evolved in “generations”
–  1st Generation: Machine language
–  2nd Generation: Assembly language
–  3rd Generation: High-level language

•  Ada, COBOL, BASIC, FORTRAN, Pascal, C, C+, C++, C#,
Java

–  4th Generation: Very high-level language
•  SQL, JavaScript, Perl, SGML (Standard General Markup

Language): HTML, XML, SAML, XACML.
–  5th Generation: Natural language

•  BPEL (Business Process Execution Language), BQEL
(Business Query Language)

- 92 -

Programming Languages

•  Assembler – program that translates an assembly
language program into machine language.
–  Assembly Language à Machine Language.

•  Compiler – translates a high-level language into
machine language.
–  High-level Language (3rd Gen.) à Machine Language.

•  Interpreter – instead of compiling a program at once,
the interpreter translates it instruction-by-instruction.
It has a fetch and execute cycle.
–  Very high-level Language (4th Gen.) à Interpreter instruction

à Machine Language.

- 93 -

Programming Languages

Object-Oriented Programming (OOP)

•  OOP method that creates an object.
–  The object is a block of pre-assembled code that is a self-

contained module.
–  Once written, object can be reused.
–  Objects are encapsulated, thus providing some security.
–  Objects have methods (code with programming interfaces)

and attributes (data) encapsulated together.

- 94 -

Programming Languages

 Object-Oriented Programming (OOP) – Characteristics

•  Object is an instance of the class.
•  Class tell the system how to make objects.
•  Encapsulation is the technique of keeping together

data structures and methods (procedures) which act
on them.

•  Method is a procedure or routine associated with one
or more classes.

•  Message: objects perform work by sending
messages to other objects.

•  Inheritance is the ability to derive new classes from
existing classes. A derived class (or subclass)
inherits the instance variables and methods of the
“base-class” (or superclass), and may add new
instance variables and methods.

- 95 -

Programming Languages

 Object-Oriented Programming (OOP) – Characteristics

•  Polymorphism describes the process of using an
object in different ways for different set of inputs.

•  Polyinstantiation is creating a new version of an
object by replacing variables with other values (or
variables).
–  Also used to prevent inference attacks against databases

because it allows different versions of the same information
to exist at different classification levels.

•  Cohesion is the ability of a module to execute one
function with little interaction from other modules.

•  Coupling is a measure of the interconnection among
modules in an application.

- 96 -

Programming Languages

 Distributed Object-Oriented Systems

•  Common Object Request Broker Architecture
(CORBA)
–  A standard that “wrap” data objects. The object request

broker (ORB) component enables heterogeneous
applications and computing environment to interoperate.

•  Component Object Model (COM) & Distributed
Component Object Model (DCOM)
–  COM and DCOM are Microsoft object-oriented system

standards for interoperate in a heterogeneous applications
within a homogeneous (Microsoft) computing environment.
It uses Object Linking & Embedding (OLE) and ActiveX.

•  Java
–  Java Platform Standard Edition (Java SE)
–  Java Platform Enterprise Edition (Java EE)

- 97 -

Programming Languages

Common Object Request Broker Architecture (CORBA)

•  A set of standards that address the need for
interoperability between hardware and software.
–  Allows applications to communicate with one another

regardless of their location.
–  The Object Request Broker (ORB) establishes a client/

server relationship between objects.
–  The ORB enforces the system’s security policy.

1. Client
application sends

message.
3. Target Object

ORB Security System

Policy
Enforcement Code

2. Policy implemented
here.

- 98 -

Programming Languages

How CORBA Works

•  CORBA uses Interface Definition Language (IDL) to describe
interface requirements.

•  CORBA uses Internet Inter-ORB Protocol (IIOP) to
communicate between Object Request Brokers (ORBs).

Source: http://www.omg.org/gettingstarted/corbafaq.htm

Object	
 Request	
 Broker

Client

IDL	
 Stubs

ORB	
 Interface

IDL	
 Skeleton

Object

IIOP

Object	
 Request	
 Broker

Client

IDL	
 Stubs

ORB	
 Interface

IDL	
 Skeleton

Object

Remote	
 Invocation	
 Mechanism

- 99 -

Programming Languages

Component Object Models
•  Component Object Model (COM) architecture

–  An open software architecture from DEC and Microsoft,
allowing interoperation between ObjectBroker and OLE.
Microsoft evolved COM into DCOM .

•  Distributed Component Object Model (DCOM)
architecture
–  An extension of COM to support objects distributed across a

network.

Programming Languages

Component Object Models

- 100 - Source: http://technet.microsoft.com/en-us/library/cc722925.aspx

- 101 -

Programming Languages

Object Linking & Embedding (OLE)

•  OLE allows applications to share functionality by live
data exchange and embedded data.
–  Embedding – places data in a foreign program.

 For example: Embedding of a Visio diagram inside of a
PowerPoint slide.

–  Linking – capability to call a program.

 For example: Double click on the embedded Visio diagram in
a PowerPoint slide and invoke Visio application to edit the
diagram.

- 102 -

Programming Languages

ActiveX

•  A loosely defined set of technologies developed by
Microsoft. ActiveX is a set of technologies that
enables interactive contents for web.

•  Elements of ActiveX technologies:
–  ActiveX Controls: interactive objects in a web page that

provides user interaction functions.
–  ActiveX Documents: enable user to view non-HTML

documents (e.g. Word, Excel, or PPT)
–  ActiveX Scripting Controls: integrated controls for ActiveX

controls and/or Java Applets from web browser or server.
–  Java Virtual Machine (JVM): enables web browser (IE) to run

Java applets and integrate with ActiveX controls.
–  ActiveX Server Framework: provide web server functions to

support the above functions plus objects for database
access and online transactions.

- 103 -

Programming Languages

Java Platforms

•  Java is designed as a standard application “platform”
for computing in a networked heterogeneous
environment (developed by Sun Microsystems.)

•  Java is a high-level programming language. Java
source code are compiled into bytecode, which can
then be executed by a Java interpreter.

•  Java has three
platforms:
–  Java SE

(Standard Edition)
–  Java EE

(Enterprise Edition)
–  Java ME

(Micro Edition)

Source: http://java.sun.com/javase/javasemap-lg.html

- 104 -

Programming Languages

Java Platform Enterprise Edition

•  Java Enterprise Edition (Java EE) uses Java SE as a
foundation

•  There are Containers are the runtime components for
Java EE.
–  Applet
–  Application Client
–  Web
–  EJB

Source: http://docs.oracle.com/cd/
E19879-01/820-4343/abeat/index.html

- 105 -

Programming Languages

Java Application Server Architecture

Source: http://www.javaworld.com/javaworld/jw-01-2008/images/tomcat6_1.jpg

Questions:

•  COBOL, FORTRAN, C, C+, C++, C# are what
generation programming languages?
– 

•  JavaScript, Perl, SQL, SGML are what generation
programming languages?
– 

•  What mechanism translates a high-level language
(3rd Generation) into machine language?
– 

- 106 -

Answers:

•  COBOL, FORTRAN, C, C+, C++, C# are what
generation programming languages?
–  3rd Generation

•  JavaScript, Perl, SQL, SGML are what generation
programming languages?
–  4th Generation

•  What mechanism translates a high-level language
(3rd Generation) into machine language?
–  Compiler

- 107 -

Questions:

•  In object-oriented programming (OOP), what tells the
system how to make object(s)?
– 

•  In OOP, what is the technique that keeps the data
structures and methods (procedures) together?
– 

•  In OOP, what is the term that describes the process
of using an object in different ways for different set of
inputs?
– 

- 108 -

Questions:

•  In object-oriented programming (OOP), what tells the
system how to make object(s)?
–  Class

•  In OOP, what is the technique that keeps the data
structures and methods (procedures) together?
–  Encapsulation

•  In OOP, what is the term that describes the process
of using an object in different ways for different set of
inputs?
–  Polymorphism

- 109 -

- 110 -

Topics
Software Development Security Domain

•  Governance & Management
•  System Life Cycle and Security
•  Software Environment and Security Controls
•  Programming Languages
•  Database and DB Warehousing Vulnerabilities,

Threats, and Protections
•  Software Vulnerabilities and Threats

- 111 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections

Database Management System (DBMS)

•  Databases are developed to manage information
from many sources in one location.
–  Eliminate the need for duplication of information in the

system (thus preserves storage space).
–  Prevent inconsistency in data by making changes in one

central location.

•  DBMS consists of: hardware, software, and
databases used to manage large sets of structured
data (or information asset).
–  Enables Multiple Users and Applications to access, view,

and modify data as Needed.
–  Can enforce control restrictions.
–  Provides data integrity and redundancy.
–  Established procedures for data manipulation.

- 112 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections
DBMS Models

•  Hierarchical DBMS
–  Stores information records (data) in a single table
–  Uses parent/child relationships
–  Limited to a single tree, no links between branches

•  Network DBMS
–  Relationship of information records are of same type
–  All associations are direct connects, which forms a network

•  Relational DBMS
–  Information records are structured in tables
–  Columns are the “attributes”, Rows are the “records”

•  Object-oriented DBMS & object relational DBMS
–  Information records are objects
–  Relationships of objects are dynamic. The association can

be made hierarchical, network, or relational

- 113 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections

Relational DBMS (RDBMS)

•  Information records (data) are structured in database tables.
–  Columns (attributes) represent the variables
–  Rows (records) contain the specific instance of information records

•  Atomic relation = Every row/column position has always
exactly one data value and never a set of values.

Traveler Manifest Table

Unique ID Last Name First Name Port of Entry (POE)

123456-123456 Smith John DCA

234567-123456 Rogers Mike LGA

345678-123456 Johnson John SFO

456789-123456 Smith Jack SAN

Attributes

Tuples /
Rows

- 114 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections

Relational DBMS (RDBMS) – Primary & Foreign Keys

Data within the RDBMS…
•  Unique ID is the “primary key”. It identifies each row

(record or tuple)
•  Tuple cannot have a null value in the primary key.
•  The primary key value guarantees that the tuple is

unique
•  “Foreign key” is an attribute or combination of

attributes in another database table that matches the
value of “primary key” in the first database table
–  Referential integrity rule

•  For any foreign key value, the reference relation to another
table must have a tuple with the same value of the other table’s
primary key

•  A null value in the foreign key field prevents a join

- 115 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections

Relational DBMS (RDBMS) – Primary & Foreign Keys

Traveler Manifest Table

Unique ID Last Name First Name Port of Entry (POE)

123456-123456 Smith John DCA

234567-123456 Rogers Mike LGA

345678-123456 Johnson John SFO

456789-123456 Smith Jack SAN

Primary Key

Baggage Manifest Table

Unique Tag ID Airline Flight Number Unique ID

DCA456-123456 AA AA-456 123456-123456

LGA567-123456 JetBlue JB-567 234567-123456

SFO678-123456 United UA-678 345678-123456

SAN89-123456 NW NW-89 456789-123456

Foreign Key

- 116 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections

Relational DBMS (RDBMS) – View & Schema

•  Data dictionary – Central repository of data elements
and their relationships.

•  Schema – Holds data that describes a database.

•  View – Virtual relation defined by the database to
keep subjects from viewing certain data.

- 117 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections

Relational DBMS (RDBMS) – Security Issues

•  Ensure integrity of input data (check input values,
prevent buffer overflow).

•  Access control ensuring only authorized user are
performing authorized activities (“need-to-know”,
“least privilege”).

•  Preventing deadlock (stalemate when 2 or more
processes are each waiting for the other to do
something before they can proceed).

- 118 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections

OODBMS &ORDBMS

•  Class is a set of objects which shares a common
structure and behavior. The relationship between
classes can be hierarchical. (i.e. super-class, and
subclass.)

•  Object is a unique instance of a data structure
defined according to the template provided by its
class. Each object has its own values for the
variables belonging to its class and can respond to
the messages (methods) defined by its class.

•  Method is a procedure or routine associated with one
or more classes.

- 119 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections

OODBMS &ORDBMS

•  Object-oriented database (OODB) represents a
“paradigm-shift” in the traditional database models
(hierarchical, network, and relational).
–  Example of OODBMS: Versant.

•  Object relations are build dynamically based on
“business needs” instead of a series of fixed
“business processes”.
–  Currently, the foundational DBMS engine for most of

ORDBMS are still RDBMS. Object relations are build:
•  Presentation Layer: User/client level.
•  Business Logic Layer: Accepts commands from the

presentation layer and send instructions to the data layer.
•  Data Layer: The database.

–  Example of ORDBMS: Oracle (8i, 9i, 10g), IBM DB2.

- 120 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections
Data Warehousing and Mining

•  Data Warehousing
–  Combines data from multiple databases or data sources into

a large database called “data warehouse”.
–  Requires more stringent security because all data is in a

central facility.

•  Data Mining
–  A.k.a. Knowledge-discovery in databases (KDD).
–  Practice of automatically searching large stores of data for

patterns.
–  Data mining tools are used to find associations and

correlations to product Metadata and can show previously
unseen relationships.

- 121 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections
Database Controls

•  Granularity - The degree to which access to objects
can be restricted.

•  Content dependant access control
–  Permissions by View combining specific tables, columns,

and key sets.
•  Authorizations for specific views having specific attributes, and

for actions to perform within those views.
•  DAC, by specific grant to user or group by owner.
•  MAC, by classification level.

–  Cell Suppression
•  A technique used to hide or not show specific cells that contain

information that could be used in an inference attack.

- 122 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections
Database Controls

•  Partitioning – Involved dividing a database into
different parts which makes it harder for an individual
to find connecting pieces

•  Noise and perturbation – A technique of inserting
bogus information aimed at misdirecting or confusing
an attacker

•  Concurrency – allowing multiple users to access the
data contained within a database at the same time.
–  Making sure the most up to date information is available
–  If concurrent access is not managed by the Database

Management System (DBMS) so that simultaneous
operations don't interfere with one another problems can
occur when various transactions interleave, resulting in an
inconsistent database.

- 123 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections
Database Controls – Types of Integrity Service

•  Semantic integrity – Ensures that structural and
semantic rules are enforced. Types of rules include
data types, logical values, uniqueness constraints,
and operations that could adversely affect the
database.

•  Entity integrity – Ensures that tuples are uniquely
identified by primary key values.

•  Referential integrity – Ensures that all foreign keys
reference valid (and existing) primary keys. The
other word, if a record does not include a primary key
it cannot be referenced.

- 124 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections
Database Controls – Configurable Controls for Integrity

•  Rollback – is a statement that ends a current
transaction and cancels all other changes
–  Occurs when some type of “glitch” is encountered during

transaction
•  Commit – terminates a transaction and executes all

changes that were just made by a user.
–  If a user attempts a “commit” and it cannot be completed

correctly…a “rollback” is executed to ensure integrity
•  Savepoint(s) – are used to ensure that if a system

failure occurs, or an error is detected, the database
can return to a known good state prior to the problem

•  Checkpoint(s) – (similar to Savepoints) when the
database S/W fills to a certain amount of memory, a
checkpoint is initiated, which saves the data from the
memory segment to a temporary file.

- 125 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections
Database Security Controls

•  Polyinstantiation
–  Allows a relation to contain multiple rows with the same

primary key
–  The multiple instances of Primary Keys are distinguished by

their security levels
–  Used to prevent inference attacks by inserting “bogus” data

at lower security levels

•  Granularity – The degree to which access to objects
can be restricted.
–  Granularity can be applied to both the actions allowable on

objects, as well as to the users allowed to perform those
actions on the object

- 126 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections
Database Security Issues

•  Online Transaction Processing (OLTP)
–  Usually used when multiple databases are clustered to

provide fault tolerance and higher performance.
–  Transaction logs are used for synchronization of databases
–  OLTP transactions occur in real time which usually updates

more than one database…which introduces integrity threats.
To counteract this ACID test should be implemented.

•  Atomicity – Divides transactions into units of work and ensures
all modifications take effect or none do

•  Consistency – A transaction must follow integrity policy for that
specific database and ensure that all data is consistent in the
different databases

•  Isolation – Transactions execute in isolation until completed,
without interacting with other transactions

•  Durability – Once the transaction is verified as accurate on all
systems, it is committed and the databases cannot be rolled
back

- 127 -

Database and DB Warehousing Vulnerabilities, Threats, and Protections
Database Threats

•  Aggregation
–  The act of combining information from separate sources.
–  The combined information has a sensitivity level greater that

any of the individual parts.
•  Inference

–  A user deduces (infers or figures out) the full story from
pieces learned through aggregation and other sources.

–  Differs from aggregation in that data not explicitly available is
used during the act of deduction (inference or plain figuring it
out).

•  Deadlocking
–  Two processes have locks on separate objects and each

process is trying to acquire a lock on the object the other
process has.

Questions:

•  What are the four types of database management
system (DBMS) models?
– 
– 
– 
– 

•  In RDBMS, what is the definition for atomic relation?
– 

•  In RDBMS, what is a primary key?
– 

- 128 -

Answers:

•  What are the four types of database management
system (DBMS) models?
–  Hierarchical
–  Network
–  Relational
–  Object-oriented

•  In RDBMS, what is the definition for atomic relation?
–  Every row/column position always contains exactly one data

value

•  In RDBMS, what is a primary key?
–  The attribute that uniquely identifies each record

- 129 -

Questions:

•  For RDBMS, how is the relationship between
database tables created?
– 

•  In an object-oriented relational database (ORDBMS),
what are the three layers where the object relations
are build?
– 
– 

– 

- 130 -

Answers:

•  For RDBMS, how is the relationship between
database tables created?
–  When an attribute of a database table is also an attribute of

another database table

•  In an object-oriented relational database (ORDBMS),
what are the three layers where the object relations
are build?
–  Presentation Layer: User/client level
–  Business Logic Layer: Accepts commands from the

presentation layer and send instructions to the data layer
–  Data Layer: The database

- 131 -

Questions:

•  For granularity access control, what are the two
content dependent access control implementations
for a DBMS?
– 
– 

•  For DBMS, what is the term used that describes
multiple users accessing data contained within a
database at the same time?
– 

•  What is the act of combining information from
different sources?
– 

- 132 -

Answers:

•  For granularity access control, what are the two
content dependent access control implementations
for a DBMS?
–  Permissions by view
–  Cell suppression

•  For DBMS, what is the term used that describes
multiple users accessing data contained within a
database at the same time?
–  Concurrency

•  What is the act of combining information from
different sources?
–  Aggregation

- 133 -

- 134 -

Topics

Software Development Security Domain

•  Governance & Management
•  System Life Cycle and Security
•  Software Environment and Security Controls
•  Programming Languages
•  Database and DB Warehousing Vulnerabilities,

Threats, and Protections
•  Software Vulnerabilities and Threats

- 135 -

Vulnerabilities & Threats

Relationship between Threat, Risk, and Countermeasure
•  Threat source. Entity that may

acts on a vulnerability.
•  Threat. Any potential danger to

information life cycle.
•  Vulnerability. A system has

weakness or flaw that may
provide an opportunity to a
threat source.

•  Risk. The likelihood of a threat
source take advantage of a
vulnerability.

•  Exposure. An instance of being
compromised by Threat Source.

•  Countermeasure / safeguard.
An administrative, operational, or
logical mitigation against
potential risk(s).

Threat source

Threat

Vulnerability

Risk

Asset

Exposure

Counter
measure

Give rise to

Exploits

Leads to

Can damage

And causes an

Can be countered by a

In
di

re
ct

ly
 a

ffe
ct

s

Reduces/
Eliminates

Vulnerabilities & Threats

Structural Defects, Weaknesses, Bugs, and Vulnerabilities

•  Vulnerabilities are weaknesses that allow attackers to
compromise the security objectives of information
and/or information systems.

•  Defects can be design flaws and/or implementation
weaknesses.

•  Bugs are implementation-level weaknesses.

- 136 -

Software Development: Rational Unified Process
Inception Elaboration Construction Transition

Business
Modeling Requirements Analysis & Design Implementation Deployment/CM

McGraw’s Software Security Touch Points
Requirements and Use Cases Architecture & Design Test

Plans Code Test & Test
Results Feedback From The Fields

Focus on software structural defects (flaws) Focus on software weaknesses (bugs)

Information Systems Security Engineering (ISSE) Life Cycle
Discover

Information
Protection

Needs

Define
Requirements

Design System
Architecture

Develop Detailed System Design &
Security Controls

Implement System & Security
Controls

Continuous
Monitoring

Vulnerabilities & Threats

Common Weakness Enumeration (CWE)

•  CWE is an online dictionary of software weaknesses.

- 137 - Reference: Common Weakness Enumeration (CWE) (http://cwe.mitre.org/)

Vulnerabilities & Threats

2011 CWE/SANS Top 25 Most Dangerous Programming
Errors

Rank Score ID Name
[1] 93.8 CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
[2] 83.3 CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
[3] 79.0 CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
[4] 77.7 CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
[5] 76.9 CWE-306 Missing Authentication for Critical Function
[6] 76.8 CWE-862 Missing Authorization
[7] 75.0 CWE-798 Use of Hard-coded Credentials
[8] 75.0 CWE-311 Missing Encryption of Sensitive Data
[9] 74.0 CWE-434 Unrestricted Upload of File with Dangerous Type

[10] 73.8 CWE-807 Reliance on Untrusted Inputs in a Security Decision
[11] 73.1 CWE-250 Execution with Unnecessary Privileges
[12] 70.1 CWE-352 Cross-Site Request Forgery (CSRF)
[13] 69.3 CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
[14] 68.5 CWE-494 Download of Code Without Integrity Check
[15] 67.8 CWE-863 Incorrect Authorization
[16] 66.0 CWE-829 Inclusion of Functionality from Untrusted Control Sphere
[17] 65.5 CWE-732 Incorrect Permission Assignment for Critical Resource
[18] 64.6 CWE-676 Use of Potentially Dangerous Function
[19] 64.1 CWE-327 Use of a Broken or Risky Cryptographic Algorithm
[20] 62.4 CWE-131 Incorrect Calculation of Buffer Size
[21] 61.5 CWE-307 Improper Restriction of Excessive Authentication Attempts
[22] 61.1 CWE-601 URL Redirection to Untrusted Site ('Open Redirect')
[23] 61.0 CWE-134 Uncontrolled Format String
[24] 60.3 CWE-190 Integer Overflow or Wraparound
[25] 59.9 CWE-759 Use of a One-Way Hash without a Salt

- 138 - Reference: http://cwe.mitre.org/top25/

Vulnerabilities & Threats

Categories of Software Weaknesses

•  Insecure interaction between components
–  “Weaknesses related to insecure ways in which data is sent

and received between separate components, modules,
programs, processes, threats, or systems.”

•  Risky resource management
–  “Weaknesses related to ways in which software does not

properly manage the creation, usage, transfer, or destruction
of important system resources.”

•  Porous defenses
–  “Weaknesses related to defensive techniques that are often

misused, abused, or just plain ignored.”

- 139 - Reference: http://cwe.mitre.org/top25/index.html

Vulnerabilities & Threats

Reduce / Eliminate Software Vulnerabilities
•  Addressing structural/design flaws

–  Understand the information protection needs
–  Develop use/abuse cases
–  Define system security requirements
–  Design system architecture
–  Develop detailed system design & security controls

•  Addressing software bugs (weaknesses)
–  Develop detailed software design & specifications
–  Implement code reviews

•  Static code analyzers
–  Perform tests

•  Unit, subsystems, system, acceptance tests
•  Vulnerability scanners

- 140 -

Threat agent

Threat

Vulnerability

Risk

Asset

Exposure

Counter
measure

Give rise to

Exploits

Leads to

Can damage

And causes an

Can be countered by a

In
di

re
ct

ly
 a

ffe
ct

s

Reduces/
Eliminates

McGraw’s Software Security Touch Points
Requirements and Use Cases Architecture & Design Test

Plans Code Test & Test
Results Feedback From The Fields

Focus on software structural defects (flaws) Focus on software weaknesses (bugs)

Information Systems Security Engineering (ISSE) Life Cycle
Discover

Information
Protection

Needs

Define
Requirements

Design System
Architecture

Develop Detailed System Design &
Security Controls

Implement System & Security
Controls

Continuous
Monitoring

- 141 -

Vulnerabilities & Threats
Threats to Software – Buffer Overflow …(1/2)

•  One of the oldest and most common problems to
software.
–  Wagner et. al. estimated over 50% of all vulnerabilities are

due to buffer overflow.*
•  No. 3 in 2011 CWE/SANS Top 25.
•  A buffer overflow occurs when a program or process

tries to store more data in a buffer (temporary data
storage area) than it was intended to hold.

•  In buffer overflow attacks, the extra data may contain
codes designed to trigger specific actions, in effect
sending new instructions to the attacked computer
that could, for example, damage the user's files,
change data, or disclose confidential information.

Reference:
•  * A First Step Towards Automated Detection of Buffer Over-run Vulnerabilities, D. Wagner, et. al., 2000.
•  2011 CWE/SANS Top 25 Most Dangerous Programming Errors, MITRE, September 2011.

Vulnerabilities & Threats
Threats to Software – Buffer Overflow …(2/2)

Recommended countermeasure to prevent buffer overflow
attacks:
•  Patch, patch, and patch
•  Always check for inputs. Enforce controls at the interfaces
•  Ensure applications are not exposed to faulty components
•  Use language and frameworks that are relatively “immune” to

buffer overflows:
Language/

Environment
Compiled /
Interpreted Strongly Typed Direct Memory

Access Safe/ Unsafe

Java, JVM Both Yes No Safe

.NET Both Yes No Safe

Perl Both Yes No Safe

Python Interpreted Yes No Safe

Ruby Interpreted Yes No Safe

C/C++ Compiled No Yes Unsafe

Assembly Compiled No Yes Unsafe

COBOL Compiled Yes No Safe

- 142 -
Reference: Buffer Overflows – OWASP (https://www.owasp.org/index.php/Buffer_Overflows) (5/14/12)

Vulnerabilities & Threats
Threats to Software – Cross-site Scripting (XSS) …(1/2)

•  XSS is one of the most prevalent web application
(web app) security flaw.

•  No. 4 in 2011 CWE/SANS Top 25 and OWASP Top
10.
–  XSS occurs when a web app in web browser accepts

“untrusted data” and sends it to a web app server without
proper validation. Attackers can then execute scripts in a
victim’s web browser to hijack user sessions, deface web
sites, insert malicious content, redirect users, etc.

–  These “untrusted data” could be JavaScript, or other
browser-executable RIA contents such as Active X, Flash,
Silverlight, etc.

- 143 -

Reference: CWE-79: Improper Neutralization of Input During Web Page Generation (Cross-site Scripting) (
http://cwe.mitre.org/data/definitions/79.html) (6/2/2013).

Vulnerabilities & Threats
Threats to Software – Cross-site Scripting (XSS) …(2/2)

•  Recommended countermeasures to prevent XSS
attacks:
–  Never insert untrusted data except in allowed locations.
–  Use “escaping” (a.k.a. output encoding) technique.
–  Use an HTML policy engine to validate or clean user-driven

HTML in an outbound way.
–  Prevent DOM-based XSS.
–  Use “HTTPOnly” cookie flag

- 144 -

Reference:
- CWE-7: Improper Neutralization of Input During Web Page Generation (Cross-site Scripting) (
http://cwe.mitre.org/data/definitions/79.html) (6/2/2013)
- XSS (Cross Site Scripting Prevention Cheat Sheet – OWASP (
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet) (5/14/12)

Vulnerabilities & Threats
Threats to Software – SQL Injection …(1/3)

•  In 2011, SQL Injection is No.1 in both CWE/SANS
Top 25 and OWASP Top 10.

•  SQL injection occurs when an application sends
“untrusted data” to an interpreter as a part of
command or query.
–  These “untrusted data” can be in SQL queries, LDAP

queries, Xpath queries, etc.

•  Attackers can:
–  Alter the logic of SQL queries to bypass security (e.g.,

authentication, authorization, etc.) to gain unauthorized
access to data (e.g., steal, corrupt, or change data.)

–  Trick the interpreter to execute unintended commands

- 145 -

Reference: CWE-89: Improper Neutralization of Special Elements used in an SQL Command (SQL Injection)
(http://cwe.mitre.org/top25/#CWE-89) (6/2/2013)

Vulnerabilities & Threats
Threats to Software – SQL Injection …(2/3)

- 146 -
Reference: Exploits of a Mom http://xkcd.com/327/) (5/14/12)

Vulnerabilities & Threats
Threats to Software – SQL Injection …(3/3)

•  Recommended countermeasures to prevent SQL
injection attacks:
–  Use “prepared statements” (/ parameterized queries) such as:

•  Java EE – use PreparedStatement() with bind variables
•  .NET – use parameterized queries like SqlCommand() or

OleDbCommand() with binding variables
•  PHP – use PDO with strongly typed parameterized queries (use

binParam())
–  Use stored procedures
–  Escaping all “user supplied” inputs. Treat user inputs as

untrusted data, don’t insert them directly as a part of a SQL
query

- 147 -

Reference: SQL Injection Prevention Cheat Sheet – OWASP (https://www.owasp.org/index.php/
SQL_Injection_Prevention_Cheat_Sheet) (5/14/12)

Vulnerabilities & Threats
Threats to Software – OS Command Injection

•  OS Command Injection (a.k.a. Shall Injection) is #2 in
2011 Top 25 CWE.
–  Attacker injects and execute unwanted system commands

through vulnerable applications that lacks proper input data
validation (e.g., forms, cookies, HTTP headers etc.)

–  As with SQL Injection, it is a variant of Code Injection attack,
except it utilizes applications running as “system” instead of
“user”.

•  Recommended countermeasure:
–  Validate inputs
–  Use application provided API
–  Run automated code analysis tools

- 148 -

Reference: CWE-78: Improper Neutralization of Special Elements used in an OS Command (
http://cwe.mitre.org/data/definitions/78.html) (6/2/2013)

Vulnerabilities & Threats
Use of Automated Analysis Tools
•  For detection of structural

flaws (“defects”)
–  Tool integration frameworks

(a.k.a. IDEs)
•  Software engineering

management, architecture/
design modeling (MBSE),
requirements traceability,
design patterns

–  Code quality review tools

- 149 -

Software Development: Rational Unified Process
Inception Elaboration Construction Transition

Business
Modeling Requirements Analysis & Design Implementation Deployment/CM

McGraw’s Software Security Touch Points
Requirements and Use Cases Architecture & Design Test

Plans Code Test & Test
Results Feedback From The Fields

Focus on software structural defects (flaws) Focus on software weaknesses (bugs)

Information Systems Security Engineering (ISSE) Life Cycle
Discover

Information
Protection

Needs

Define
Requirements

Design System
Architecture

Develop Detailed System Design &
Security Controls

Implement System & Security
Controls

Continuous
Monitoring

•  For detection of software weakness
(“bugs”)
–  Static code analysis tools

•  Source code security analyzers, byte
code scanners, binary code scanners

–  Dynamic analysis tools
•  Web application vulnerability scanners,

database vulnerability scanners
–  Network vulnerability scanners
–  SCAP-compatible security

configuration scanners

Vulnerabilities & Threats
Malicious Code / Malware

•  Malicious code / malware (MALicious softWARE)

•  For CISSP, there are many types of “malware”:
–  Viruses
–  Worms
–  Trojan horses
–  Rootkits
–  Spyware
–  Some cookies…

Reference: http://youtu.be/cf3zxHuSM2Y

- 150 -

Vulnerabilities & Threats
Malware as a Threat to Information Operations …(1/3)

•  Operations are getting better at addressing insider
threats…

»  VZ (Verizon)
»  USSS (United States Secret Service)

•  The fact is that most of threats are still
from external threat agents.

- 151 -
Reference: 2011 Data Breach Investigations Report, Verizon, January 2012 (http://www.verizonbusiness.com/
resources/reports/rp_data-breach-investigations-report-2011_en_xg.pdf)

•  Most of data breaches are from hacking and
malware...

•  Majority of malware are installed remotely...

Vulnerabilities & Threats
Malware as a Threat to Information Operations …(2/3)

- 152 -

Reference: 2011 Data Breach Investigations Report, Verizon, January 2012 (http://www.verizonbusiness.com/
resources/reports/rp_data-breach-investigations-report-2011_en_xg.pdf)

•  Advanced Persistent Threat (APT) is very real
–  Malware is now a tool for hackers
–  They are stealing data...

Vulnerabilities & Threats
Malware as a Threat to Information Operations …(3/3)

- 153 -

Reference: 2011 Data Breach Investigations Report, Verizon, January 2012 (http://www.verizonbusiness.com/
resources/reports/rp_data-breach-investigations-report-2011_en_xg.pdf)

- 154 -

Vulnerability & Threats
Threats to Software – Malicious Code / Malware

Malicious code / malware (MALicious softWARE)
•  Virus – A program or piece of code that is loaded

onto your computer without your knowledge and
runs against your wishes. Viruses can also replicate
themselves. A simple virus that can make a copy of
itself over and over again is relatively easy to
produce.

•  Polymorphic virus – A virus that changes its virus
signature (i.e., its binary pattern) every time it
replicates and infects a new file in order to keep
from being detected by an antivirus program.

- 155 -

Vulnerability & Threats
Threats to Software – Malicious Code / Malware

•  Boot sector virus – A boot sector virus is a common
type of virus that replaces the boot sector with its own
code. Since the boot sector executes every time a
computer is started, this type of virus is extremely
dangerous.

•  Macro virus – A type of computer virus that is encoded
as a macro embedded in a document. Many
applications, such as Microsoft Word and Excel,
support powerful macro languages. These applications
allow you to embed a macro in a document, and have
the macro execute each time the document is opened.
–  According to some estimates, 75% of all viruses today are

macro viruses. Once a macro virus gets onto your machine, it
can embed itself in all future documents you create with the
application.

- 156 -

Vulnerability & Threats
Threats to Software – Malicious Code / Malware

•  Worm – A program or algorithm that replicates itself
over a computer network and usually performs
malicious actions. Differ from viruses in that they are
self contained and do not need a host application to
reproduce.

•  Logic bomb – Also called slag code, programming
code (typically malicious) added to the software of an
application or operating system that lies dormant until
a predetermined period of time or event occurs,
triggering the code into action.

- 157 -

Vulnerability & Threats
Threats to Software – Malicious Code / Malware

•  Trojan horse – A destructive program that
masquerades as a benign application. Unlike viruses,
Trojan horses do not replicate themselves but they
can be just as destructive. One of the most insidious
types of Trojan horse is a program that claims to rid
your computer of viruses but instead introduces
viruses onto your computer.

•  Data diddler – refers to the payload in a Trojan or
virus that deliberately corrupts data, generally by
small increments over time.

•  Hoax – usually warnings about viruses that do not
exist, generally carry a directive to the user to forward
the warning to all addresses available to them.

•  Trapdoor/backdoor – can also be called a
maintenance hook; it’s a hidden mechanism that
bypasses access control measures.

- 158 -

Validation Time… J

1. Classroom Exercise

2. Review Answers

Classroom Exercise: Constructing a Security Engineering
Project… (1/5)

- 159 -

Systems Engineering (SE) Activities Security Engineering (ISSE) Activities
Discover Mission/Business Needs
The SE helps the customer understand and document the
information management needs that support the business or
mission. Statements about information needs may be
captured in an information management model (IMM).

Discover Information Protection Needs
The ISSE facilitates the system owners, architects, and
engineers in assessing the information protection needs by
performing risk assessment, capturing the information
management model (IMM), defining the information protection
policy (IPP) and compile them into a comprehensive
information management plan (IMP).

Define System Requirements
The SE allocates identified needs to systems. A system
context is developed to identify the system environment and
to show the allocation of system functions to that
environment. A preliminary system Concept of Operations
(CONOPS) is written to describe operational aspects of the
candidate system (or systems). Baseline requirements are
established.

Define System Security Requirements
The ISSE allocates the information protection needs in
accordance with the information management plan (IMP) that
aligns with a preliminary system security concept of
operations (CONOPS) and generates a set of baseline
security requirements in accordance with FIPS 200.

Design System Architecture
The SE performs functional analysis and allocate by analyzing
candidate architectures, allocating requirements, and
selecting mechanisms. The system engineer identifies
components or elements, allocates functions to those
elements, and describes the relationships between the
elements.

Design System Security Architecture
The ISSE works in conjunction with system architect and
engineers in defining a system architecture using the
designated system architecture framework to explain the
system architecture at the conceptual and logic levels in
meeting the defined baseline security requirements.

Classroom Exercise: Constructing a Security Engineering
Project… (2/5)

- 160 -

Systems Engineering (SE) Activities Security Engineering (ISSE) Activities
Develop Detailed System Design
The SE analyzes design constrains, analyzes trade-offs, does
detailed system design, and considers life-cycle support. The
systems engineer traces all of the system requirements to the
elements until all are addressed. The final detailed design
results in component and interface specifications that provide
sufficient information for acquisition where the system is
implemented.

Develop Detailed Security Design
The ISSE analyzes the design constrains, trade-offs from the
system architecture and begin to work with system architect
and engineers to define detailed system design.

Implement System
The SE moves the system from specifications to the tangible.
The main activities are acquisition, integration, configuration,
testing, documentation, and training. Components are tested
and evaluated to ensure that they must meet the
specifications. After successful testing, the individual
components – hardware, software, and firmware – are
integrated, properly configured, and tested as a system.

Implement System Security
The ISSE works with SE in implementing the baseline
detailed system design. The information systems security
engineer provide inputs to the certification and accreditation
(C&A) process and verify the implemented system design
meets the defined baseline security requirements against the
identified threats .

Assess System Effectiveness
The results of each activity are evaluated to ensure that the
system will meet the user’s needs by performing the required
functions to the required quality standard in the intended
environment. The systems engineer examines how well the
system meets the needs of the mission.

Assess System Security Effectiveness
The ISSE focuses on the effectiveness of the implemented
security controls and countermeasures, and validates them
against the defined information management plan (IMP).

Classroom Exercise: Constructing a Security Engineering
Project… (3/5)

1.  Discovering the Information Protection Needs
1.1 Collect & analyze system information: Business/

Mission Needs, high-level concept of information
operations, data sensitivity, mode of operations, etc.

1.2 Perform Risk Assessment of the “to-be” information
system

1.3 Generate Information Management Model (IMM)
1.4 Generate Information Protection Policy (IPP)
1.5 Assemble Information Management Plan

2.  Defining the System Security Requirements
2.1 Define security context description (i.e. scope)
2.2 Generate system security requirements: functional &

assurance

- 161 -

Classroom Exercise: Constructing a Security Engineering
Project… (4/5)

3.  Designing the System Security Architecture
3.1 Describe the Conceptual Security Architecture
3.2 Describe the Logical Security Architecture
3.3 Describe the Physical Security Architecture

4.  Developing the Detailed System Security Design
4.1 Describe the Security Architecture at the components

level
4.1.1 Defending the Network & Infrastructure
4.1.2 Defending the Enclave Boundary
4.1.3 Defending the Computing Environment
4.1.4 Supporting the IT Infrastructure

- 162 -

Classroom Exercise: Constructing a Security Engineering
Project… (5/5)

5.  Implementing the System Security
5.1 Implement system design for defending the network

infrastructure
5.2 Implement system design for defending the enclave

boundary
5.3 Implement system design for defending the computing

environment
5.4 Implement system design for supporting the IT

Infrastructure
6.  Assessing the Security Effectiveness

6.1 Perform analysis on Security Requirements Traceability
matrix (S-RTM)

6.2 Verify conformance of system design to S-RTM
6.3 Validate security implementation to S-RTM
6.4 Support Security Certification & Accreditation (C&A)

Team

- 163 -

Group 1: Waterfall SDLC Model

- 164 -

Requirements

Design

Implementation

Verification

Maintenance

ISSE Phase 1: Discovering Information
Protection Needs

ISSE Phase 2: Define Security
Requirements

ISSE Phase 3: Design System Security
Architecture

ISSE Phase 4: Develop Detailed
Security Design

ISSE Phase 5: Implement System
Security

ISSE Phase 6: Assess Security
Effectiveness

Group 1: Waterfall SDLC Model

- 165 -

1.0 ? ? 1.5

1.3

1.4

Req. ? ? ?

6.1Dsgn.

3.1 ? ? 4.0 4.1

?

?

?

?

6.2Impl.

5.0 5.1 ?

?

?6.3

Group 2: DoD-STD-2167A (V-Model)

- 166 -

Project

System

Software

Process
Implementation

Software
Requirements

Analysis

Software
Installation

Software
Acceptance

Support

System
Requirements

Analysis

System
Architecture

Design

System
Integration

System
Qualification

Testing

Software
Architectural

Design

Software Detailed
Design

Software Coding
& Testing

Software
Integration

Software
Qualification

Testing

ISSE Phase 1: Discovering
Information Protection Needs

ISSE Phase 2: Define Security
Requirements

ISSE Phase 3: Design System
Security Architecture

ISSE Phase 4: Develop
Detailed Security Design

ISSE Phase 5: Implement System Security

ISSE Phase 6: Assess
Security Effectiveness

Group 2: DoD-STD-2167A (V-Model)

- 167 -

1.0 ? ? ?

1.3

1.4

Sys.
Req. 2.0 ? ?

6.1

Sys.
Arch. 3.1 ? ? 4.0 4.1

?

?

?

?6.2

Sys.
Intgr.

5.0 5.1 ?

?

?6.3

Prcs.
Impl.

SW.
Req. 2.0 2.1 2.2

6.1

3.1 ? ?SW.
Arch. 4.0 ?

4.1.3

4.1.4

6.2

Group 3: Boehm’s Spiral SDLC Model

- 168 -
IS

SE
 P

ha
se

 5

ISSE Phase 4 ISSE Phase 3

ISSE Phase 2

ISSE Phase 1

ISSE Phase 6:
Assess Security

Effectiveness

Group 3: Boehm’s Spiral SDLC Model

- 169 -

1.0 ? ? ?

1.3

1.4

SW.
Req. 2.0 ? ?

6.1

Sys.
Plan.

?

?

Sys.
Intgr.

5.0 5.1 ?

?

?6.3

Risk
Anlys

SW.
Req. 2.0 ? ?

6.1

3.1 ? ?SW.
Arch. 4.0 4.1

?

?

6.2

Risk
Anlys 1.0 ? ?

1.3

1.4

?

Test,
Eval.

ANSWERS
Reference

- 170 -

Group 1: Waterfall SDLC Model

- 171 -

1.0 1.1 1.2 1.5

1.3

1.4

Req. 2.0 2.1 2.2

6.1Dsgn.

3.1 3.2 3.3 4.0 4.1

4.1.1

4.1.2

4.1.3

4.1.4

6.2Impl.

5.0 5.1 5.2

5.3

5.46.3

Group 2: DoD-STD-2167A (V-Model)

- 172 -

1.0 1.1 1.2 1.5

1.3

1.4

Sys.
Req. 2.0 2.1 2.2

6.1

Sys.
Arch. 3.1 3.2 3.3 4.0 4.1

4.1.1

4.1.2

4.1.3

4.1.46.2

Sys.
Intgr.

5.0 5.1 5.2

5.3

5.46.3

Prcs.
Impl.

SW.
Req. 2.0 2.1 2.2

6.1

3.1 3.2 3.3SW.
Arch. 4.0 4.1

4.1.3

4.1.4

6.2

Group 3: Boehm’s Spiral SDLC

- 173 -

1.0 1.1 1.2 1.5

1.3

1.4

SW.
Req. 2.0 2.1 2.2

6.1

Sys.
Plan.

4.1.1

4.1.2

Sys.
Intgr.

5.0 5.1 5.2

5.3

5.46.3

Risk
Anlys

SW.
Req. 2.0 2.1 2.2

6.1

3.1 3.2 3.3SW.
Arch. 4.0 4.1

4.1.3

4.1.4

6.2

Risk
Anlys 1.0 1.1 1.2

1.3

1.4

1.5

Test,
Eval.

